Download link
File List
-
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.mp4 54.58 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.mp4 50.21 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.mp4 48.38 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.mp4 43.55 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.mp4 39.4 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.mp4 39.15 MB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.mp4 38.12 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.mp4 37.06 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.mp4 36.16 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.mp4 34.84 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.mp4 33.67 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.mp4 33.39 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.mp4 33.2 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.mp4 32.51 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.mp4 30.38 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.mp4 30.11 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.mp4 28.86 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.mp4 28.67 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.mp4 27.57 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.mp4 26.65 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.mp4 26.59 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.mp4 25.79 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.mp4 25.67 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.mp4 24.79 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.mp4 24.26 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.mp4 23.76 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.mp4 23.33 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.mp4 23.11 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.mp4 22.33 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.mp4 22.11 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.mp4 22.01 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.mp4 22 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.mp4 21.57 MB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.mp4 21.51 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.mp4 21.37 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.mp4 21.12 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.mp4 21.03 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.mp4 20.97 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.mp4 20.89 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.mp4 20.67 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.mp4 20.67 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.mp4 20.24 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.mp4 20.08 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.mp4 20.07 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.mp4 19.81 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.mp4 19.68 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.mp4 19.11 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.mp4 18.85 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.mp4 18.16 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.mp4 18.1 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.mp4 17.97 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.mp4 17.74 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.mp4 17.7 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.mp4 17.65 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.mp4 17.45 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.mp4 17.31 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.mp4 17.27 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.mp4 17.23 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.mp4 16.98 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.mp4 16.9 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.mp4 16.64 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.mp4 16.53 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.mp4 16.03 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.mp4 15.96 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.mp4 15.85 MB
Part 03-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.mp4 15.66 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.mp4 15.65 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.mp4 14.77 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.mp4 14.75 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.mp4 14.3 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/01. 01 Welcome To The Deep Learning Program-3QPEmwq2NaE.mp4 14.28 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.mp4 14.13 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.mp4 13.63 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.mp4 13.4 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.mp4 13.32 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.mp4 13.27 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.mp4 13.09 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.mp4 12.92 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.mp4 12.76 MB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.mp4 12.68 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.mp4 12.65 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.mp4 12.64 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.mp4 12.55 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.mp4 12.46 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.mp4 11.98 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.mp4 11.79 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.mp4 11.67 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.mp4 11.25 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.mp4 11.25 MB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.mp4 11.1 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.mp4 11.03 MB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.mp4 10.75 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.mp4 10.72 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.mp4 10.69 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.mp4 10.61 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.mp4 10.5 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.mp4 10.43 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.mp4 10.41 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.mp4 10.38 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.mp4 10.3 MB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.mp4 10.29 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.mp4 10.28 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.mp4 10.26 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.mp4 10.17 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.mp4 10.11 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.mp4 10.07 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.mp4 10.01 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.mp4 9.96 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.mp4 9.91 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.mp4 9.78 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.mp4 9.73 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.mp4 9.65 MB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.mp4 9.62 MB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.mp4 9.56 MB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.mp4 9.47 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.mp4 9.23 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.mp4 9.22 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.mp4 9.2 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.mp4 9.1 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.mp4 9.09 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.mp4 9.08 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.mp4 8.92 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.mp4 8.91 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.mp4 8.87 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.mp4 8.84 MB
Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.mp4 8.76 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.mp4 8.71 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.mp4 8.68 MB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.mp4 8.59 MB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.mp4 8.46 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.mp4 8.41 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.mp4 8.28 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.mp4 8.27 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.mp4 8.23 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.mp4 8.2 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.mp4 8.14 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.mp4 8.09 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.mp4 8.09 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.mp4 8.08 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.mp4 8.05 MB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.mp4 8.04 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.mp4 8.04 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.mp4 7.98 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.mp4 7.79 MB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.mp4 7.75 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.mp4 7.73 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.mp4 7.63 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.mp4 7.63 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.mp4 7.57 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/chess-game.jpg 7.54 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.mp4 7.54 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.mp4 7.43 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.mp4 7.36 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.mp4 7.34 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.mp4 7.34 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.mp4 7.26 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.mp4 7.26 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.mp4 7.21 MB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.mp4 7.2 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.mp4 7.2 MB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.mp4 7.12 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.mp4 7.11 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.mp4 7.1 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.mp4 7.08 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.mp4 7 MB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.mp4 6.97 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.mp4 6.92 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.mp4 6.86 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.mp4 6.84 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.mp4 6.82 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.mp4 6.82 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.mp4 6.66 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.mp4 6.66 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.mp4 6.64 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.mp4 6.61 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.mp4 6.6 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.mp4 6.57 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.mp4 6.52 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.mp4 6.42 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.mp4 6.29 MB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.mp4 6.23 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.mp4 6.18 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.mp4 6.18 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.mp4 6.15 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.mp4 6.15 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.mp4 6.13 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.mp4 5.99 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.mp4 5.89 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.mp4 5.88 MB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.mp4 5.86 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.mp4 5.83 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.mp4 5.82 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.mp4 5.75 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.mp4 5.69 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.mp4 5.54 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.mp4 5.51 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.mp4 5.46 MB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.mp4 5.43 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.mp4 5.42 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.mp4 5.39 MB
Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/img/carnd.jpg 5.35 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.mp4 5.35 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.mp4 5.33 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.mp4 5.28 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.mp4 5.2 MB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.mp4 5.17 MB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.mp4 5.15 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.mp4 5.13 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.mp4 5.08 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.04 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.mp4 5.04 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.mp4 5.04 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.mp4 4.98 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.mp4 4.97 MB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.mp4 4.95 MB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.mp4 4.93 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.mp4 4.84 MB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.mp4 4.78 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.mp4 4.73 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.mp4 4.73 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.mp4 4.69 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.mp4 4.69 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.mp4 4.4 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.mp4 4.4 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.mp4 4.38 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.mp4 4.33 MB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.mp4 4.28 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.mp4 4.28 MB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.mp4 4.25 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.mp4 4.22 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.mp4 4.22 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.mp4 4.22 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.mp4 4.19 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.mp4 4.16 MB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.mp4 4.14 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.mp4 4.14 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.mp4 4.14 MB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.mp4 4.12 MB
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.mp4 4.08 MB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.mp4 4.03 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.mp4 4.03 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.mp4 4.01 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.mp4 3.99 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.mp4 3.95 MB
Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.mp4 3.9 MB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.mp4 3.88 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.mp4 3.87 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.mp4 3.86 MB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.mp4 3.85 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.mp4 3.85 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.mp4 3.85 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.mp4 3.76 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.mp4 3.66 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.mp4 3.58 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.mp4 3.55 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.mp4 3.54 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.24-pm.png 3.49 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.mp4 3.46 MB
Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression-aUJCBqBfEnI.mp4 3.46 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.mp4 3.45 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.mp4 3.44 MB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.mp4 3.4 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.mp4 3.31 MB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.mp4 3.28 MB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.mp4 3.25 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.mp4 3.22 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.mp4 3.2 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.mp4 3.16 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.mp4 3.11 MB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.mp4 3.09 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.09.02-pm.png 3.09 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.mp4 3.07 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.mp4 3.02 MB
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.mp4 3.01 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.mp4 2.96 MB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.mp4 2.9 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/screen-shot-2016-11-24-at-12.08.11-pm.png 2.9 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.mp4 2.88 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.mp4 2.87 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.mp4 2.85 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.mp4 2.85 MB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.mp4 2.84 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.mp4 2.83 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.mp4 2.83 MB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-agent-monitor-main.gif 2.73 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.mp4 2.68 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.mp4 2.68 MB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.mp4 2.65 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.mp4 2.59 MB
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.mp4 2.58 MB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.mp4 2.57 MB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.mp4 2.46 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-1.29.13-pm.png 2.45 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.mp4 2.43 MB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.mp4 2.38 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.mp4 2.34 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.mp4 2.31 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.mp4 2.3 MB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.mp4 2.29 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.mp4 2.26 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.mp4 2.24 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.mp4 2.23 MB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.mp4 2.22 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.mp4 2.22 MB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.mp4 2.22 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.mp4 2.22 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.mp4 2.2 MB
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.mp4 2.2 MB
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.mp4 2.19 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.mp4 2.15 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.mp4 2.15 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.mp4 2.14 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.mp4 2.14 MB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.mp4 2.13 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.mp4 2.08 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.mp4 2.07 MB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.mp4 2.05 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.mp4 2 MB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.mp4 1.99 MB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/run-main.gif 1.99 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.mp4 1.98 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.mp4 1.95 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.mp4 1.92 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.mp4 1.88 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.mp4 1.86 MB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.mp4 1.83 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.mp4 1.73 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.mp4 1.73 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.mp4 1.72 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.mp4 1.71 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.mp4 1.65 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/skin-disease-classes.png 1.64 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.mp4 1.62 MB
Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.mp4 1.61 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.mp4 1.58 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.mp4 1.58 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.mp4 1.57 MB
Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.mp4 1.57 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/lesions.png 1.57 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.mp4 1.55 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.mp4 1.52 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.mp4 1.5 MB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/frozen-lake-6.jpg 1.5 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.mp4 1.49 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.mp4 1.49 MB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.mp4 1.48 MB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.mp4 1.46 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.mp4 1.46 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.mp4 1.46 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.mp4 1.46 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.mp4 1.33 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.mp4 1.32 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.mp4 1.24 MB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/arch.png 1.2 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.mp4 1.15 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.mp4 1.14 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.mp4 1.13 MB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.mp4 1.13 MB
Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.mp4 1.12 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.31.11-pm.png 1.12 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.mp4 1.11 MB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.mp4 1.11 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-11-at-2.04.14-pm.png 1.1 MB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.mp4 1.1 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.mp4 1.07 MB
Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.mp4 1.06 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-10.43.49-pm.png 1.05 MB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.mp4 1.04 MB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.mp4 1.04 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.12.31-am.png 1.03 MB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.16.19-am.png 1.02 MB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.mp4 1.01 MB
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.mp4 1001.4 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/statevalue.png 1000.89 KB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.mp4 982.28 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.mp4 982.27 KB
Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.mp4 981.31 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.14.30-am.png 980.68 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.mp4 947 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.mp4 927.05 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-10-at-9.12.16-pm.png 898.01 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/nature.png 893.03 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.mp4 888.58 KB
img/dl-classroom-1200x900.jpg 875.27 KB
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.mp4 873.14 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.13-pm.png 871.76 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.mp4 862.5 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/img/chi-waves.png 823.61 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.mp4 819.86 KB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/open-terminal.gif 819.23 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.49.52-pm.png 806.66 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.49.20-pm.png 758.55 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/student-quiz.png 748.98 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-4.58.58-pm.png 716 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-2.04.54-pm.png 696.35 KB
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.mp4 692.8 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.mp4 676.91 KB
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.mp4 667.23 KB
Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.mp4 660.25 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/actionvalue.png 628.42 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-24-at-4.28.04-pm.png 622.69 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/go.jpg 614.8 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/and-to-or.png 606.14 KB
Part 01-Module 01-Lesson 03_Anaconda/media/conda_default_install.mp4 595.3 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-3.png 575.91 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.mp4 573.82 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/img/submit-workspace.png 546.65 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.51.44-pm.png 518.88 KB
Part 08-Module 01-Lesson 02_Regression/img/house.png 491.52 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/screen-shot-2016-10-21-at-15.43.05.png 481.52 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.10.02-pm.png 478.46 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png 471.61 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/img/screen-shot-2018-03-19-at-3.49.28-pm.png 471.61 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/examples.jpg 469.13 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/threshold.png 468.31 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-08-31-at-3.27.10-pm.png 463.09 KB
assets/img/udacimak.png 461.07 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/quadcopter.png 455.67 KB
Part 01-Module 01-Lesson 03_Anaconda/img/screen-shot-2018-03-19-at-2.49.57-pm.png 442.46 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/screen-shot-2018-03-19-at-2.49.57-pm.png 442.46 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.38.24-am.png 440.9 KB
Part 01-Module 01-Lesson 03_Anaconda/img/conda-search.png 430.84 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/study-group.png 415.28 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-9.55.20-am.png 414.22 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-2.18.38-pm.png 405.83 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. Images-1GdiN5Wc8LA.mp4 395.42 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.mp4 394.99 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/or-quiz.png 393.62 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.22-am.png 386.52 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/value-iteration.png 381.24 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.46.35-pm.png 367.04 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-action.png 363.61 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/review-example.png 362.83 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.27.51-pm.png 362.57 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-1.40.14-pm.png 361.16 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-pred-state.png 348.13 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.34.41-pm.png 347.44 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/img/generated-mnist.png 345.99 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-3.08.28-pm.png 334.55 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-12-17-at-12.49.34-pm.png 332.55 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/Markdown+cells.mp4 330.36 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/boston-back-bay-reflection.jpg 317.9 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-08-at-3.43.34-pm.png 316.84 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/td-prediction.png 311.15 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/confusion-matrix.png 310.94 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/img/atari-network.png 309.97 KB
Part 02-Module 01-Lesson 07_Keras/img/all-ranks.png 308.47 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/screen-shot-2017-01-26-at-2.51.02-pm.png 302.55 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/screen-shot-2016-10-26-at-19.28.34.png 297.79 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-glie.png 297.18 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsa.png 286.8 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/layers.png 286.1 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.38.03-am.png 276.13 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/mc-control-constant-a.png 274.97 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/truncated-iter.png 274 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-5.01.26-pm.png 271.87 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-10.54.50-am.png 269.96 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/and-quiz.png 265.78 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/sarsamax.png 264.54 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.mp4 260.01 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/policy-eval.png 259.66 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-11.03.16-pm.png 259.66 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-06.png 259.12 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/screen-shot-2018-06-12-at-5.07.10-pm.png 257.46 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-04.png 255.16 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/expected-sarsa.png 254.43 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-01.png 251.26 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/precision-quiz.png 250.81 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/matengai-of-kuniga-coast-in-oki-island-shimane-pref600.jpg 247.02 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.23.49-pm.png 246.93 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-10.png 241.76 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-08.png 241.57 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/iteration.png 241.36 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.49.43-pm.png 233.63 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-07.png 233.3 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-05.png 232.52 KB
assets/js/katex.min.js 231.26 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-2.jpeg 231.25 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/cat-1.jpeg 230.78 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.58.01-pm.png 229.98 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-03.png 228.93 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/recall-quiz.png 228.26 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-09.png 228.05 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.38.51-pm.png 225.33 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/truncated-eval.png 225.19 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/karpathy-network.png 221.8 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/full-padding-no-strides-transposed.gif 221.74 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-09-26-at-4.22.09-pm.png 219.33 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/02-guide-how-transfer-learning-v3-02.png 219.27 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/notebook+interface.mp4 215.47 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/xor.png 214.95 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/multi-layer.png 214.34 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.50-pm.png 210.59 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/meme.png 209.05 KB
Part 02-Module 01-Lesson 07_Keras/img/meme.png 209.05 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/meme.png 209.05 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/meme.png 209.05 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/meme.png 209.05 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/exploration-vs.-exploitation.png 204.28 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-12.20.30-pm.png 203.11 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-21-at-12.20.30-pm.png 203.11 KB
Part 01-Module 01-Lesson 03_Anaconda/media/conda_install.mp4 201.72 KB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 01_Recurrent Neural Networks/data.json 199.19 KB
Part 08-Module 01-Lesson 02_Regression/img/batch-stochastic.png 196.92 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-06-13-at-12.58.03-pm.png 196.32 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/media/monkey-doctor.png 189.92 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/confusion.png 188.85 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/p2-limit-increase.png 188.22 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/medical.png 186.53 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/new-confusion-matrix.png 186.16 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/1omsg2-mkguagky1c64uflw.gif 183.96 KB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/new-tab.gif 181.31 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/pup.jpg 181.27 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.44.20-pm.png 180.98 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/img/screen-shot-2017-11-30-at-1.34.44-pm.png 180.65 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/img/mat-headshot.png 179.99 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/mat-headshot.png 179.99 KB
Part 03-Module 01-Lesson 04_Weight Initialization/img/mat-headshot.png 179.99 KB
Part 03-Module 01-Lesson 05_Autoencoders/img/mat-headshot.png 179.99 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/img/mat-headshot.png 179.99 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/img/mat-headshot.png 179.99 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/img/mat-headshot.png 179.99 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/img/mat-headshot.png 179.99 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/img/mat-headshot.png 179.99 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/img/mat-headshot.png 179.99 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/2-card-21.png 175.83 KB
Part 08-Module 01-Lesson 02_Regression/img/quiz.jpg 174.18 KB
Part 08_Additional Lessons/Module 02_Miniflow/Lesson 01_MiniFlow/data.json 173.43 KB
Part 08-Module 02-Lesson 01_MiniFlow/media/input-to-output-2.mp4 172.03 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/img/svhn-examples.png 169.93 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-29-at-5.33.53-pm.png 169.63 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/media/command+palette.mp4 169.16 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.09.07-pm.png 164.04 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.14.45-pm.png 163.9 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/example-neural-network.png 163.05 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.49.24-pm.png 159.51 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-12-17-at-9.41.03-am.png 158.23 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit.png 157.29 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/precision-recall.png 156.71 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/rnn.png 155.7 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/server-shutdown.png 155.42 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sensitivity-specificity.png 155.14 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.08.03-pm.png 152.93 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/incremental.png 151.93 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/est-action.png 150.55 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/email.png 148.53 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/img/parrot-ar-drone.jpg 146.51 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-submit.png 146.2 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-gpu.png 145.5 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2017-11-26-at-10.30.15-am.png 145.1 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/constant-alpha.png 143.69 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-notebook.png 142.9 KB
assets/css/bootstrap.min.css 137.63 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curves.png 137.28 KB
Part 08-Module 01-Lesson 02_Regression/img/minibatch.png 136.77 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-07-19-at-5.39.37-pm.png 131.05 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-confusion-matrix.png 130.52 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/p2xlarge-limit-request.png 129.66 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.03.45-pm.png 129.43 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-27-at-6.29.49-pm.png 129.29 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/img/poker-hand-3-of-a-kind.png 128.64 KB
assets/js/plyr.polyfilled.min.js 126.16 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/improve.png 124.46 KB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 01_Introduction to Neural Networks/data.json 124.28 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/admissions-data.png 118.38 KB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 08_TensorFlow/data.json 114.43 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/backgammonboard.svg.png 112.81 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/img/linear-relationships.png 112.35 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.00.15-pm.png 110.26 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/conda-tab.png 109.92 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-03-at-11.36.39-pm.png 109.7 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-17-at-5.38.55-pm.png 108.05 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/topological-sort.001.jpeg 107.27 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/amazonwebservices-logo.svg.png 107.16 KB
Part 08-Module 01-Lesson 02_Regression/img/nn.png 105.99 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/img/accuracy-quiz.png 105.85 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-server.png 103.33 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/article-2278590-1792e332000005dc-394-634x615.jpg 103.03 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.09.13-pm.png 102.6 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/new-notebook.png 101.77 KB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 02_Implementing Gradient Descent/data.json 101.14 KB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 02_Convolutional Neural Networks/data.json 97.6 KB
Part 01-Module 01-Lesson 03_Anaconda/media/conda_enter.mp4 97.26 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-json.png 95.29 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.46.43-pm.png 94.9 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/xor-quiz.png 94.14 KB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 04_Dynamic Programming/data.json 93.96 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-menu.png 93.96 KB
Part 02-Module 01-Lesson 07_Keras/img/summary.png 93.72 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/perceptronquiz.png 93.69 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/example-data.png 92.11 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-matplotlib.png 90.72 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/img/regularization-quiz.png 87.9 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/tensorflow.png 85.28 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-new.png 85.21 KB
assets/js/jquery-3.3.1.min.js 84.89 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-05-at-3.55.40-pm.png 84.7 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-jupyter.png 83.54 KB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 02_The RL Framework The Problem/data.json 83.52 KB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 05_Monte Carlo Methods/data.json 82.32 KB
Part 01-Module 01-Lesson 03_Anaconda/img/conda-install.png 81.15 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-1.43.36-pm.png 80.86 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-download.png 79.54 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.29.14-pm.png 79.28 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/matrix-mult-3.png 78.97 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc.png 78.96 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-6.02.37-pm.png 78.84 KB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/data.json 77.95 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/img/flappy-bird.jpg 76.23 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/word-embeddings.jpg 75.09 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-12-at-5.47.45-pm.png 73.59 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/img/enable-gpu.png 73.47 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/nbconvert-example.png 73.3 KB
Part 08_Additional Lessons/Module 01_Regression, Eval/Lesson 02_Regression/data.json 72.27 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/gradient-descent.png 71.96 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-5.54.40-pm.png 71.35 KB
Part 01-Module 01-Lesson 03_Anaconda/img/conda-create-env.png 70.79 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/img/notebook.png 70.26 KB
assets/css/fonts/KaTeX_AMS-Regular.ttf 69.75 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.40.57-pm.png 69.63 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/img/grokking-deep-learning.jpg 69.52 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/addition-graph.png 68.97 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-pdb.png 68.61 KB
Part 08-Module 01-Lesson 02_Regression/img/just-a-2d-reg.png 68.49 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-30-at-4.41.08-pm.png 68.49 KB
assets/css/fonts/KaTeX_Main-Regular.ttf 68.43 KB
Part 06-Module 01-Lesson 01_Introduction to RL/img/paper-notes.svg.png 67.42 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.19-pm.png 67.13 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.17.35-pm.png 66.8 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-11.55.58-am.png 65.27 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-5.51.40-pm.png 64.59 KB
Part 01-Module 01-Lesson 03_Anaconda/img/conda-env-export.png 64.05 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/convolution-schematic.gif 63.63 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/convolution-schematic.gif 63.63 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/points.png 63.17 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/pasted-image-at-2016-10-25-01-17-pm.png 62.75 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/dropout-node.jpeg 62.69 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/cross-entropy-diagram.png 62.67 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-16-at-2.40.57-pm.png 62.57 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-shutdown.png 62.35 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/slides-cell-toolbar-menu.png 61.36 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.42.56-am.png 61.24 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-1.48.59-pm.png 61.06 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.50.40-am.png 61.02 KB
assets/css/fonts/KaTeX_Main-Bold.ttf 60.27 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/convolutional-neural-networks-2.jpg 59.66 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-weights.png 59.44 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.37.27-am.png 59.04 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/img/screen-shot-2017-10-04-at-2.46.11-pm.png 58.97 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.10.56-pm.png 58.73 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.45.50-pm.png 57.92 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/w1-backprop-graph.png 57.33 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-2.44.11-pm.png 56.84 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/img/screen-shot-2017-10-17-at-11.02.44-am.png 56.5 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/magic-timeit2.png 56.11 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.25.10-pm.png 55.6 KB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/media/Screen+Shot+2017-01-27+at+11.38.54+AM.png 55.1 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/derivative-example.png 55.08 KB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 03_The RL Framework The Solution/data.json 54.9 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.08.59-pm.png 54.16 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/notmnist.png 54.15 KB
Part 02-Module 01-Lesson 08_TensorFlow/media/nmn.png 54.15 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.44.15-pm.png 54.1 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-11.06.19-pm.png 53.42 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/slides-choose-slide-type.png 53.31 KB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 04_Jupyter Notebooks/data.json 52.71 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-9.18.00-pm.png 52.48 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/softmax-input-output.png 52.45 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-3.46.12-pm.png 52.28 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/network-with-labeled-nodes.png 52 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/img/input-times-weights.png 51.82 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/input-times-weights.png 51.82 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-27-at-3.48.31-pm.png 51.7 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/w2-backprop-graph.png 50.06 KB
assets/js/bootstrap.min.js 49.84 KB
Part 02-Module 01-Lesson 07_Keras/img/data.png 49.54 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-4.12.59-pm.png 49.25 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.58.26-pm.png 48.81 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/multilayer-diagram-weights.png 48.57 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.07.21-pm.png 48.1 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.42.29-pm.png 47.82 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/stop.png 47.54 KB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/img/screen-shot-2018-04-14-at-3.13.15-pm.png 47.1 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/workspaces-terminal.png 46.91 KB
assets/css/fonts/KaTeX_Main-Italic.ttf 46.83 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/sample-roc-curve.png 46.33 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/layer-1-grid.png 45.73 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.31.41-pm.png 44.91 KB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 01_Welcome to Deep Learning/data.json 44.42 KB
assets/js/jquery.mCustomScrollbar.concat.min.js 44.41 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-02-at-10.46.12-pm.png 43.99 KB
assets/css/fonts/KaTeX_Main-BoldItalic.ttf 43.77 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.21.41-pm.png 43.2 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/neuron.png 42.92 KB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 06_Temporal-Difference Methods/data.json 42.88 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-3.38.11-pm.png 42.82 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/two-layer-graph.png 42.82 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/faces.png 42.81 KB
assets/css/jquery.mCustomScrollbar.min.css 41.83 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/aws-add-sec-group.png 41.71 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-3.54.17-pm.png 41.68 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.26.22-pm.png 41.24 KB
assets/css/fonts/KaTeX_Math-Italic.ttf 40.48 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/conda-environments.png 40.09 KB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 05_Matrix Math and NumPy Refresher/data.json 39.46 KB
assets/css/fonts/KaTeX_AMS-Regular.woff 39.26 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-6.01.16-pm.png 39.12 KB
assets/css/fonts/KaTeX_Math-BoldItalic.ttf 38.81 KB
assets/css/fonts/KaTeX_Main-Regular.woff 38.52 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/local-minima.png 38.08 KB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 01_Cloud Computing/data.json 37.7 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/maxpool.jpeg 37.07 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-3.38.43-pm.png 37.05 KB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 06_Sentiment Analysis/data.json 37.01 KB
assets/css/fonts/KaTeX_Main-Bold.woff 35.89 KB
assets/css/fonts/KaTeX_Typewriter-Regular.ttf 35.46 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/grid-layer-1.png 35.3 KB
Part 08-Module 02-Lesson 01_MiniFlow/12. Backpropagation.html 35.19 KB
assets/css/fonts/KaTeX_Fraktur-Bold.ttf 35.13 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-09-at-3.53.12-pm.png 35.08 KB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 05_Teach a Quadcopter How to Fly/data.json 35 KB
assets/css/fonts/KaTeX_Fraktur-Regular.ttf 33.84 KB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 03_Anaconda/data.json 33.47 KB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 07_Keras/data.json 33.27 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-4.47.47-pm.png 33.26 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/screen-shot-2018-01-08-at-5.37.22-am.png 33.23 KB
assets/css/fonts/KaTeX_SansSerif-Bold.ttf 33.23 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.16.55-pm.png 32.54 KB
assets/css/fonts/KaTeX_AMS-Regular.woff2 32.43 KB
assets/css/fonts/KaTeX_Main-Regular.woff2 32.09 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/img/roc-curve.png 31.48 KB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 03_CNNs in TensorFlow/data.json 31.36 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/relu-network.png 31.09 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/session.png 30.85 KB
assets/css/fonts/KaTeX_SansSerif-Italic.ttf 30.57 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.10.10-pm.png 30.38 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/img/notebook-components.png 30.25 KB
assets/css/fonts/KaTeX_Main-Bold.woff2 29.9 KB
assets/css/fonts/KaTeX_SansSerif-Regular.ttf 29.45 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/pooling-dims.png 29.17 KB
Part 08-Module 01-Lesson 02_Regression/img/lin-reg-no-outliers.png 28.61 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/conv-dims.png 28.55 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/img/screen-shot-2017-11-16-at-4.27.58-pm.png 27.77 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-20-at-12.02.06-pm.png 27.64 KB
Part 08-Module 01-Lesson 02_Regression/img/lin-reg-w-outliers.png 27.55 KB
Part 08_Additional Lessons/Module 01_Regression, Eval/Lesson 01_Evaluation Metrics/data.json 27.13 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-05-at-12.04.21-am.png 27.05 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/screen-shot-2017-09-21-at-4.34.08-pm.png 26.85 KB
assets/css/fonts/KaTeX_Main-Italic.woff 26.56 KB
Part 04-Module 01-Lesson 04_Hyperparameters/img/f3iwvmld-400x400.jpg 26.43 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/gradient-descent-convergence.gif 26.35 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.54.48-pm.png 26.13 KB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 04_Hyperparameters/data.json 25.96 KB
Part 08-Module 01-Lesson 02_Regression/img/just-a-simple-lin-reg.png 25.95 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/05. Implementing Gradient Descent.html 25.93 KB
assets/css/fonts/KaTeX_Main-BoldItalic.woff 25.61 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/gradient-descent-divergence.gif 25.56 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/img/screen-shot-2017-09-25-at-11.35.38-am.png 25.22 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/img/max-pooling.png 25.19 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.02.16-pm.png 25.15 KB
Part 02-Module 01-Lesson 08_TensorFlow/07. Quiz Mini-batch.html 24.94 KB
Part 03-Module 01-Lesson 05_Autoencoders/img/autoencoder-1.png 24.69 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/weights-0-1-2.png 24.61 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/tensorflow-825x510.png 24.5 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-02-21-at-3.05.00-pm.png 24.29 KB
assets/css/fonts/KaTeX_Script-Regular.ttf 24.28 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-21-at-4.02.19-pm.png 24.25 KB
assets/css/plyr.css 23.62 KB
Part 08-Module 01-Lesson 02_Regression/img/quadraticlinearregression.png 23.56 KB
Part 08-Module 02-Lesson 01_MiniFlow/13. Stochastic Gradient Descent.html 23.33 KB
assets/css/fonts/KaTeX_Math-Italic.woff 23.26 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-5.14.13-pm.png 23.21 KB
assets/css/fonts/KaTeX_Fraktur-Bold.woff 22.84 KB
assets/css/fonts/KaTeX_Math-BoldItalic.woff 22.65 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/launch-instance.png 22.52 KB
assets/css/fonts/KaTeX_Main-Italic.woff2 22.52 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-01-at-11.43.26-am.png 22.51 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/img/sequence-to-sequence-unrolled-encoder-decoder.png 22.5 KB
assets/css/fonts/KaTeX_Fraktur-Regular.woff 22.31 KB
assets/css/fonts/KaTeX_Main-BoldItalic.woff2 21.67 KB
assets/css/katex.min.css 21.56 KB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 02_Long Short-Term Memory Networks (LSTM)/data.json 21.27 KB
Part 02-Module 01-Lesson 08_TensorFlow/04. Quiz TensorFlow Linear Function.html 21.14 KB
Part 01_Introduction to Deep Learning/Module 01_Introduction to the Nanodegree/Lesson 02_Applying Deep Learning/data.json 21.01 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/08. Implementing Backpropagation.html 20.72 KB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 01_Generative Adversarial Networks/data.json 20.56 KB
Part 02-Module 01-Lesson 07_Keras/img/student-acceptance.png 20.47 KB
assets/css/fonts/KaTeX_Typewriter-Regular.woff 20.43 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/mnist-012.png 20.21 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer Perceptrons.html 20.19 KB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 01_RL in Continuous Spaces/data.json 20.09 KB
assets/css/fonts/KaTeX_Fraktur-Bold.woff2 20.01 KB
assets/css/fonts/KaTeX_Math-Italic.woff2 19.95 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.51.54-pm.png 19.83 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.pt-BR.vtt 19.8 KB
assets/css/fonts/KaTeX_Math-BoldItalic.woff2 19.57 KB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 04_GPU Workspaces Demo/data.json 19.46 KB
assets/css/fonts/KaTeX_Fraktur-Regular.woff2 19.39 KB
assets/css/fonts/KaTeX_Caligraphic-Bold.ttf 19.13 KB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 02_Deep Q-Learning/data.json 19.03 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. Perceptrons as Logical Operators.html 19.02 KB
Part 08-Module 02-Lesson 01_MiniFlow/14. SGD Solution.html 18.81 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/29. Mini Project Dermatologist AI.html 18.8 KB
assets/css/fonts/KaTeX_SansSerif-Bold.woff 18.72 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation.html 18.61 KB
Part 08-Module 02-Lesson 01_MiniFlow/07. Linear Transform.html 18.6 KB
assets/css/fonts/KaTeX_Caligraphic-Regular.ttf 18.52 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.en.vtt 18.48 KB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 03_Training Neural Networks/data.json 18.09 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning.html 18.01 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. Backpropagation- Example (part b).html 17.94 KB
assets/css/fonts/KaTeX_SansSerif-Italic.woff 17.7 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.en.vtt 17.68 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.pt-BR.vtt 17.59 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.pt-BR.vtt 17.23 KB
assets/css/fonts/KaTeX_Typewriter-Regular.woff2 17.13 KB
Part 08-Module 02-Lesson 01_MiniFlow/09. Cost.html 17.02 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-11.48.08-pm.png 16.87 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.en.vtt 16.86 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. Backpropagation Through Time (part b).html 16.79 KB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/data.json 16.75 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/15. Exploration vs. Exploitation.html 16.74 KB
Part 08-Module 02-Lesson 01_MiniFlow/08. Sigmoid Function.html 16.54 KB
assets/css/fonts/KaTeX_SansSerif-Regular.woff 16.39 KB
Part 08-Module 01-Lesson 02_Regression/15. Linear Regression in scikit-learn.html 16.14 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.zh-CN.vtt 15.84 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution-imnxzCev4SI.pt-BR.vtt 15.8 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.pt-BR.vtt 15.77 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/review-and-launch.png 15.75 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/06. Deadline Policy.html 15.71 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.en.vtt 15.63 KB
assets/css/fonts/KaTeX_SansSerif-Bold.woff2 15.62 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent.html 15.58 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/14. Quiz Dimensionality.html 15.55 KB
index.rar 15.19 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.en.vtt 15.17 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Algorithm.html 15.07 KB
assets/css/fonts/KaTeX_SansSerif-Italic.woff2 14.86 KB
Part 02-Module 01-Lesson 07_Keras/02. Keras.html 14.82 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Sentiment RNN 2-V9YGGjmoHS0.zh-CN.vtt 14.72 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/01. Introduction to GPU Workspaces.html 14.7 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/19. MC Control Constant-alpha, Part 2.html 14.63 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.pt-BR.vtt 14.51 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Refresh on Confusion Matrices.html 14.49 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/22. Summary.html 14.41 KB
Part 02-Module 01-Lesson 08_TensorFlow/14. Save and Restore TensorFlow Models.html 14.4 KB
Part 08-Module 02-Lesson 01_MiniFlow/04. Forward Propagation.html 14.28 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec-7M431_f9HgE.zh-CN.vtt 14.27 KB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 02_Deep Convolutional GANs/data.json 14.26 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.pt-BR.vtt 14.18 KB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.en.vtt 14.17 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.42-pm.png 14.17 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. The Feedforward Process.html 14.01 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Backpropagation - Example (part a).html 13.97 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/16. Quiz One-Step Dynamics, Part 2.html 13.94 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.en.vtt 13.94 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.en.vtt 13.87 KB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.pt-BR.vtt 13.87 KB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 03_Implementation of RNN and LSTM/data.json 13.86 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/14. Quiz Epsilon-Greedy Policies.html 13.81 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator-OWytckbbeGQ.zh-CN.vtt 13.74 KB
Part 08-Module 01-Lesson 02_Regression/19. (Optional) Closed form Solution Math.html 13.71 KB
assets/css/fonts/KaTeX_SansSerif-Regular.woff2 13.7 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.pt-BR.vtt 13.69 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.en.vtt 13.69 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/24. Visualizing CNNs (Part 2).html 13.65 KB
assets/css/fonts/KaTeX_Script-Regular.woff 13.53 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/aws-create-account.png 13.5 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise-ubqhh4Iv7O4.zh-CN.vtt 13.47 KB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 04_Semi-Supervised Learning/data.json 13.45 KB
Part 02-Module 01-Lesson 08_TensorFlow/16. Quiz TensorFlow Dropout.html 13.37 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. Backpropagation Through Time (part c).html 13.33 KB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 07_CNN Project Dog Breed Classifier/rubric.json 13.29 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/27. Summary.html 13.14 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-network.png 13.07 KB
Part 06_Deep Reinforcement Learning/Module 01_Reinforcement Learning/Lesson 01_Introduction to RL/data.json 13.06 KB
Part 03-Module 01-Lesson 05_Autoencoders/03. A-Simple-Autoencoders 21718-lXGdkCT8E1c.en.vtt 12.95 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/img/screen-shot-2017-10-02-at-10.41.44-am.png 12.87 KB
assets/css/fonts/KaTeX_Size1-Regular.ttf 12.86 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/23. Some more math.html 12.83 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary.html 12.81 KB
Part 02-Module 01-Lesson 08_TensorFlow/08. Epochs.html 12.8 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/edit-security-group.png 12.76 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/03. Data in NumPy.html 12.76 KB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 07_Generate TV Scripts/rubric.json 12.73 KB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/Project Rubric - Dog Breed Classifier.html 12.72 KB
Part 08-Module 01-Lesson 02_Regression/17. Multiple Linear Regression.html 12.66 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/06. An Iterative Method, Part 2.html 12.63 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.pt-BR.vtt 12.59 KB
Part 08-Module 02-Lesson 01_MiniFlow/06. Learning and Loss.html 12.59 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.pt-BR.vtt 12.52 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.en.vtt 12.52 KB
Part 08-Module 02-Lesson 01_MiniFlow/05. Forward Propagation Solution.html 12.48 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.pt-BR.vtt 12.3 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Neural Network Architecture.html 12.29 KB
Part 04-Module 01-Lesson 07_Generate TV Scripts/Project Rubric - Generate TV Scripts.html 12.28 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs.html 12.27 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/09. Quiz Goals and Rewards.html 12.23 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.pt-BR.vtt 12.21 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.pt-BR.vtt 12.17 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.en.vtt 12.13 KB
assets/css/fonts/KaTeX_Size2-Regular.ttf 12.12 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution-ji0famK7gOQ.zh-CN.vtt 12.11 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/07. CNNs in TensorFlow.html 12.11 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/12. Quiz Optimal Policies.html 12.09 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/04. Program Structure.html 12.08 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights-UHsT35pbpcE.zh-CN.vtt 12.07 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building The RNN 1-XTD6slf64fM.zh-CN.vtt 12.07 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/09. Implementation.html 12.06 KB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders-18SZVRaumGs.zh-CN.vtt 12.04 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. Backpropagation Through Time (part a).html 12.02 KB
assets/css/fonts/KaTeX_Script-Regular.woff2 11.99 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent.html 11.97 KB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 06_Transfer Learning in TensorFlow/data.json 11.94 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Softmax.html 11.91 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/04. Quiz Test Your Intuition.html 11.87 KB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff 11.85 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/07. Quiz State-Value Functions.html 11.85 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.en-US.vtt 11.81 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. RNN (part b).html 11.81 KB
Part 03-Module 01-Lesson 01_Cloud Computing/05. Launch an Instance.html 11.8 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation.html 11.77 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.en.vtt 11.75 KB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 05_Embeddings and Word2vec/data.json 11.74 KB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.en.vtt 11.68 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. What are Jupyter notebooks.html 11.64 KB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff 11.59 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/03. Quiz Interpret the Policy.html 11.58 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/index.jpg 11.56 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/neww-nk-fixed.gif 11.5 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/02. Style Transfer.html 11.48 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/11. Action Values.html 11.46 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Trick.html 11.46 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/19. Summary.html 11.44 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/22. BPTT Quiz 3.html 11.44 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.en.vtt 11.37 KB
Part 02-Module 01-Lesson 08_TensorFlow/13. Deep Neural Network in TensorFlow.html 11.33 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.pt-BR.vtt 11.32 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/13. Convolutional Layers in Keras.html 11.3 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/12. Quiz Pole-Balancing.html 11.27 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.pt-BR.vtt 11.23 KB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters.html 11.21 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. Backpropagation- Theory.html 11.15 KB
Part 08-Module 02-Lesson 01_MiniFlow/11. Gradient Descent.html 11.09 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.pt-BR.vtt 11.08 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.en.vtt 11.03 KB
assets/css/fonts/KaTeX_Size4-Regular.ttf 11.02 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.pt-BR.vtt 11 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.40.54-pm.png 11 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.en.vtt 10.9 KB
Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.en.vtt 10.87 KB
Part 02-Module 01-Lesson 07_Keras/03. Pre-Lab Student Admissions in Keras.html 10.87 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.pt-BR.vtt 10.84 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/07. Quiz An Iterative Method.html 10.83 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.en.vtt 10.81 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.en.vtt 10.72 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements-Zfdbp93A2GU.zh-CN.vtt 10.72 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise-W7TawMNxBds.zh-CN.vtt 10.7 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.pt-BR.vtt 10.69 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.en.vtt 10.68 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/save-2.png 10.66 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/11. Backpropagation Quiz.html 10.66 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/18. Finite MDPs.html 10.59 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-12-04-at-12.42.55-pm.png 10.57 KB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/02. Instructions.html 10.39 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/15. Quiz One-Step Dynamics, Part 1.html 10.38 KB
Part 08-Module 01-Lesson 02_Regression/22. Regularization-PyFNIcsNma0.pt-BR.vtt 10.38 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/13. Summary.html 10.37 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes-NVK5xCY3CZE.zh-CN.vtt 10.35 KB
assets/css/fonts/KaTeX_Caligraphic-Bold.woff2 10.35 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. Refresh on ROC Curves.html 10.33 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. Feedforward Neural Network-Reminder.html 10.33 KB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.pt-BR.vtt 10.29 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/08. Mini Project Training an MLP on MNIST.html 10.23 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. GANs Architecture -gaEs7ccZv_Q.zh-CN.vtt 10.22 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Cross-Entropy 2.html 10.2 KB
assets/css/fonts/KaTeX_Caligraphic-Regular.woff2 10.17 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.pt-BR.vtt 10.16 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.en.vtt 10.16 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/15. More on Sensitivity and Specificity.html 10.16 KB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate-HLMjeDez7ps.zh-CN.vtt 10.11 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/04. Gradient Descent The Code.html 10.08 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/16. Max Pooling Layers in Keras.html 10.08 KB
Part 08-Module 01-Lesson 02_Regression/14. Absolute Error vs Squared Error.html 10.06 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood.html 10.04 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/04. Launching the notebook server.html 10.02 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.en.vtt 9.99 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction-Kl3hWxizKVg.zh-CN.vtt 9.97 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs for Image Classification.html 9.96 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. RNN History.html 9.96 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/06. DDPG Agent.html 9.96 KB
Part 01-Module 01-Lesson 03_Anaconda/03. What is Anaconda.html 9.95 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.en.vtt 9.95 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.en.vtt 9.94 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous.html 9.94 KB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 07_CNN Project Dog Breed Classifier/data.json 9.89 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.en.vtt 9.88 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/26. Check Your Understanding.html 9.87 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations.html 9.86 KB
Part 02-Module 01-Lesson 08_TensorFlow/15. Finetuning.html 9.84 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/11. NumPy Quiz.html 9.8 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/02. OpenAI Gym FrozenLakeEnv.html 9.74 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/17. CNNs For Image Classification-l9vg_1YUlzg.zh-CN.vtt 9.72 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.04.24-pm.png 9.71 KB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 06_Sentiment Prediction RNN/data.json 9.7 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-10-30-at-11.56.27-am.png 9.69 KB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.en.vtt 9.67 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/07. Feedforward Quiz.html 9.64 KB
Part 08-Module 02-Lesson 01_MiniFlow/03. MiniFlow Architecture.html 9.64 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.zh-CN.vtt 9.62 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/17. Summary.html 9.62 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. Solution Diagnosing Cancer.html 9.61 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.en.vtt 9.55 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.pt-BR.vtt 9.52 KB
Part 08-Module 02-Lesson 01_MiniFlow/02. Graphs.html 9.52 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Maximizing Probabilities.html 9.51 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.en.vtt 9.51 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.en.vtt 9.5 KB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.en.vtt 9.47 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games, Equilibrium, GANs Solution Render-2zi8DOWIVas.zh-CN.vtt 9.47 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent-Math-7sxA5Ap8AWM.zh-CN.vtt 9.46 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/26. Pre-Lab Gradient Descent.html 9.45 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/24. Implementation.html 9.44 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Logistic Regression.html 9.37 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Log-loss Error Function.html 9.33 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.pt-BR.vtt 9.31 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.en.vtt 9.3 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.pt-BR.vtt 9.29 KB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/Project Description - Your first neural network.html 9.27 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Learning-_LRpHPxZaX0.zh-CN.vtt 9.26 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/09. Magic keywords.html 9.25 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/03. Your Workspace.html 9.23 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise-wNpI1wUA4Io.zh-CN.vtt 9.23 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/21. Implementation.html 9.18 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/04. DDPG Actor.html 9.18 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs (Part 1).html 9.17 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. From RNN to LSTM.html 9.15 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.pt-BR.vtt 9.14 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.pt-BR.vtt 9.13 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. Skin Cancer.html 9.12 KB
Part 02-Module 01-Lesson 08_TensorFlow/12. Quiz TensorFlow ReLUs.html 9.12 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/15. Implementation.html 9.11 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.en.vtt 9.11 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/01. Project Intro.html 9.11 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN And The Generator-CH6BxLTKt7s.pt-BR.vtt 9.09 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.en.vtt 9.07 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.pt-BR.vtt 9.06 KB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 05_Autoencoders/data.json 9.04 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/x-mn.png 9.02 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.pt-BR.vtt 8.99 KB
Part 02-Module 01-Lesson 07_Keras/07. Pre-Lab IMDB Data in Keras.html 8.99 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. Feedforward.html 8.98 KB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 05_Project Predicting Bike Sharing Data/data.json 8.95 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.en.vtt 8.95 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-60-2.png 8.94 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.pt-BR.vtt 8.94 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN-TR-uEJcjig4.zh-CN.vtt 8.9 KB
Part 03-Module 01-Lesson 01_Cloud Computing/img/launch.png 8.9 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. Higher Dimensions.html 8.89 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classification Problems 1.html 8.89 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. Multi-Class Cross Entropy.html 8.89 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/07. Markdown cells.html 8.88 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/01. Convolutional Layers.html 8.87 KB
Part 02-Module 01-Lesson 08_TensorFlow/06. Quiz TensorFlow Cross Entropy.html 8.86 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/07. Udacity Support.html 8.85 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.zh-CN.vtt 8.85 KB
Part 03-Module 01-Lesson 01_Cloud Computing/06. Login to the Instance.html 8.84 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/11. Quiz Incremental Mean.html 8.83 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/09. Mini Project 2.html 8.83 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.en.vtt 8.83 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.en.vtt 8.83 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. Perceptrons.html 8.83 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.en.vtt 8.81 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. RNN (part a).html 8.8 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.pt-BR.vtt 8.8 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. Quiz Sensitivity and Specificity.html 8.8 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/04. Implementation.html 8.79 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.pt-BR.vtt 8.78 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/05. Notebook interface.html 8.77 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras.html 8.77 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example.html 8.72 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN-KPCMn_jg2oY.zh-CN.vtt 8.71 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers-RnM1D-XI--8.zh-CN.vtt 8.71 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/02. OpenAI Gym BlackjackEnv.html 8.68 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.en.vtt 8.66 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.en.vtt 8.66 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.en.vtt 8.66 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.en.vtt 8.66 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/35. Pre-Lab Analyzing Student Data.html 8.62 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2-8jtk8BzBdj8.zh-CN.vtt 8.61 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/10. Transposes in NumPy.html 8.58 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/05. Element-wise Operations in NumPy.html 8.57 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/03. Materials.html 8.56 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/05. DDPG Critic.html 8.56 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.45.22-pm.png 8.56 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.en.vtt 8.51 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.en.vtt 8.51 KB
Part 02-Module 01-Lesson 08_TensorFlow/05. Quiz TensorFlow Softmax.html 8.49 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.pt-BR.vtt 8.49 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy.html 8.46 KB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions.html 8.45 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.pt-BR.vtt 8.44 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries.html 8.44 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/12. Implementation.html 8.44 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras.html 8.42 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/20. BPTT Quiz 1.html 8.38 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images.html 8.37 KB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.pt-BR.vtt 8.37 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. Quiz Data Challenges.html 8.36 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/05. Quiz Episodic or Continuing.html 8.36 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/14. Error Functions-jfKShxGAbok.zh-CN.vtt 8.34 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.en.vtt 8.33 KB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.en.vtt 8.32 KB
Part 02-Module 01-Lesson 08_TensorFlow/03. Hello, Tensor World!.html 8.32 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. Quiz ROC Curve.html 8.32 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.zh-CN.vtt 8.31 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/27. Useful Resources.html 8.29 KB
Part 08-Module 01-Lesson 02_Regression/20. Linear Regression Warnings.html 8.29 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.pt-BR.vtt 8.27 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. Quiz Random vs Pre-initialized Weights.html 8.27 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay-wX_-SZG-YMQ.zh-CN.vtt 8.25 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.pt-BR.vtt 8.24 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.en.vtt 8.22 KB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 03_Policy-Based Methods/data.json 8.21 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.zh-CN.vtt 8.2 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. RNN Applications.html 8.2 KB
Part 01-Module 01-Lesson 03_Anaconda/06. Managing environments.html 8.19 KB
Part 03_Convolutional Networks/Module 01_ConvNets/Lesson 04_Weight Initialization/data.json 8.19 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution-Hv86B_jjWTI.zh-CN.vtt 8.19 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures.html 8.18 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/08. Troubleshooting.html 8.18 KB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.pt-BR.vtt 8.17 KB
assets/css/fonts/KaTeX_Size3-Regular.ttf 8.16 KB
Part 02-Module 01-Lesson 08_TensorFlow/02. Installing TensorFlow.html 8.16 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.pt-BR.vtt 8.15 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/36. Notebook Analyzing Student Data.html 8.14 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. Quiz Diagnosing Cancer.html 8.14 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/27. Notebook Gradient Descent.html 8.13 KB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Weight Initialization 1-6vXMYu_TQIA.zh-CN.vtt 8.12 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.12 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/15. Unfolded Model Quiz.html 8.12 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.pt-BR.vtt 8.12 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. M2L3 02 V2-ToS8vXGdODE.zh-CN.vtt 8.11 KB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.en.vtt 8.1 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.en.vtt 8.1 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/07. Implementation.html 8.1 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Perceptron vs Gradient Descent.html 8.09 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/02. Quiz Convolutional Layers.html 8.09 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.en.vtt 8.07 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/08. NumPy Matrix Multiplication.html 8.07 KB
Part 08-Module 01-Lesson 02_Regression/13. Mini-batch Gradient Descent.html 8.05 KB
Part 02-Module 01-Lesson 08_TensorFlow/09. Pre-Lab NotMNIST in TensorFlow.html 8.04 KB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/Project Rubric - Your first neural network.html 8.03 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.en.vtt 8.03 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/21. BPTT Quiz 2.html 8.03 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.zh-CN.vtt 8 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/08. Implementation.html 7.98 KB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Weight Initialization 2-BI3f0Cdc_nU.zh-CN.vtt 7.97 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.pt-BR.vtt 7.96 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-43.gif 7.96 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/20. Mini Project 6.html 7.96 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross-Entropy 1.html 7.95 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.en.vtt 7.95 KB
Part 03-Module 01-Lesson 01_Cloud Computing/03. Get Access to GPU Instances.html 7.93 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.pt-BR.vtt 7.91 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/16. Analyzing Performance.html 7.9 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. M2L3 07 V2-ZBLLGIN1EfU.zh-CN.vtt 7.88 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/12. Mini Project 3.html 7.88 KB
Part 02_Neural Networks/Module 01_Neural Networks/Lesson 05_Project Predicting Bike Sharing Data/rubric.json 7.88 KB
Part 01-Module 01-Lesson 03_Anaconda/05. Managing packages.html 7.87 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.pt-BR.vtt 7.86 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem-IsTOnkAKaJw.pt-BR.vtt 7.85 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/01. Instructor.html 7.84 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network-4MuS-6ATxCU.pt-BR.vtt 7.84 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/21. Mini Project Image Augmentation in Keras.html 7.83 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.en.vtt 7.81 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.pt-BR.vtt 7.81 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.pt-BR.vtt 7.81 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/17. Mini Project 5.html 7.8 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdl2-grad-fixed.gif 7.79 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Logistic Regression Algorithm.html 7.79 KB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.pt-BR.vtt 7.78 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Problems 2.html 7.76 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en-US.vtt 7.75 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons.html 7.75 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks.html 7.75 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/11. Convolutional Layers (Part 2).html 7.75 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/19. Mini Project CNNs in Keras.html 7.75 KB
Part 08-Module 01-Lesson 02_Regression/12. Mean vs Total Error.html 7.74 KB
Part 02-Module 01-Lesson 08_TensorFlow/01. Intro.html 7.74 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions.html 7.73 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1-JRoCFQRP4B0.zh-CN.vtt 7.72 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models.html 7.72 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.pt-BR.vtt 7.71 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding.html 7.71 KB
Part 08-Module 01-Lesson 02_Regression/02. Quiz Housing Prices.html 7.71 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions.html 7.71 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-linear Data.html 7.71 KB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number of Training Iterations Epochs.html 7.7 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction.html 7.68 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/37. Outro.html 7.68 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. Image Challenges.html 7.68 KB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/Project Description - Dog Breed Classifier.html 7.67 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras.html 7.64 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs for Image Classification.html 7.64 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/02. OpenAI Gym CliffWalkingEnv.html 7.64 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.pt-BR.vtt 7.64 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/02. Resources.html 7.62 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity-z9wiDg0w-Dc.zh-CN.vtt 7.62 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/18. Implementation.html 7.6 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution-l4r5l0HvHRI.pt-BR.vtt 7.59 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Has Dimensions-F4NSv776X0c.zh-CN.vtt 7.59 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.pt-BR.vtt 7.59 KB
Part 05-Module 01-Lesson 03_Generate Faces/Project Rubric - Generate Faces.html 7.58 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.pt-BR.vtt 7.57 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix.html 7.57 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.pt-BR.vtt 7.57 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/Project Rubric - Teach a Quadcopter How to Fly.html 7.56 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.en.vtt 7.55 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.en.vtt 7.52 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.en.vtt 7.5 KB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 04_Actor-Critic Methods/data.json 7.5 KB
Part 02-Module 01-Lesson 08_TensorFlow/11. Two-layer Neural Network.html 7.49 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.en.vtt 7.49 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/03. Learning Plan.html 7.48 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.pt-BR.vtt 7.48 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/17. Doing More With Your GAN.html 7.47 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/04. Implementation.html 7.44 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.en.vtt 7.42 KB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/01. Introduction.html 7.42 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.pt-BR.vtt 7.42 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. RNN Introduction.html 7.4 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.zh-CN.vtt 7.39 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. Traffic Navigation with Deep Reinforcement Learning-az5ElmV4DhY.en.vtt 7.35 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/08. Community Guidelines.html 7.34 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.en.vtt 7.34 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random vs Pre-initialized Weight.html 7.34 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment Prediction-uGN3rZJRiMY.pt-BR.vtt 7.33 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.pt-BR.vtt 7.33 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.en.vtt 7.33 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction.html 7.33 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.en.vtt 7.33 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0)-CsD6b0csU7o.zh-CN.vtt 7.32 KB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.pt-BR.vtt 7.31 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/18. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.3 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve-2Iw5TiGzJI4.zh-CN.vtt 7.3 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivity and Specificity.html 7.29 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What is the network looking at.html 7.29 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well .html 7.29 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.pt-BR.vtt 7.27 KB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.pt-BR.vtt 7.27 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example.html 7.26 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1.html 7.25 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/11. Creating a slideshow.html 7.24 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/20. Implementation.html 7.24 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training the Neural Network.html 7.24 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.en.vtt 7.22 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2017-11-06-at-2.05.19-pm.png 7.22 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction.html 7.22 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges.html 7.21 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.en.vtt 7.21 KB
Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/01. Enroll in your next ND program.html 7.21 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.en.vtt 7.21 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers.html 7.21 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating the Training.html 7.21 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values-0q2wSWyuBj8.zh-CN.vtt 7.2 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification.html 7.2 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/04. Max Pooling Layers.html 7.19 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. False Negatives and Positives.html 7.18 KB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 03_Generate Faces/rubric.json 7.18 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Probability of Skin Cancer.html 7.18 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 08 Backpropagation Theory V6 Final-Xlgd8I3TWUg.zh-CN.vtt 7.18 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve.html 7.17 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.pt-BR.vtt 7.17 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.en.vtt 7.16 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. Comparing our Results with Doctors.html 7.16 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix.html 7.16 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/16. Implementation.html 7.16 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/10. Mini Project DP (Parts 0 and 1).html 7.14 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis.html 7.14 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization.html 7.14 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. RNN- Example.html 7.13 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/13. Mini Project DP (Part 2).html 7.13 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/16. Mini Project DP (Part 3).html 7.13 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/19. Mini Project DP (Part 4).html 7.13 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/22. Mini Project DP (Part 5).html 7.13 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/25. Mini Project DP (Part 6).html 7.13 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Intro.html 7.12 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion.html 7.12 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The data.html 7.1 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.pt-BR.vtt 7.1 KB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent.html 7.1 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/14. Implementation.html 7.09 KB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.en.vtt 7.06 KB
Part 01-Module 01-Lesson 03_Anaconda/04. Installing Anaconda.html 7.05 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.en.vtt 7.04 KB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.en.vtt 7.04 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.pt-BR.vtt 7.03 KB
Part 08-Module 01-Lesson 02_Regression/24. Neural Networks Playground.html 7.03 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/20. Image Augmentation in Keras-odStujZq3GY.zh-CN.vtt 7.02 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.pt-BR.vtt 7.01 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/15. Mini Project 4.html 7 KB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoder Solutions-w3iPs6YnqmY.zh-CN.vtt 7 KB
Part 04-Module 01-Lesson 04_Hyperparameters/04. Learning Rate.html 6.99 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers (Part 1).html 6.98 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization-ndYnUrx8xvs.zh-CN.vtt 6.96 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/09. Local Connectivity.html 6.95 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding.html 6.95 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.zh-CN.vtt 6.94 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/06. Mini Project 1.html 6.93 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.en.vtt 6.92 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.en.vtt 6.91 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement-4_adUEK0IHg.zh-CN.vtt 6.9 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. Cool Things To Do With GANs-bo-ToTdhgew.pt-BR.vtt 6.86 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/26. Wrap Up.html 6.85 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. RNN- Unfolded Model.html 6.85 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build The Network And Results-hu8iMMqajmQ.zh-CN.vtt 6.85 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/10. Quiz.html 6.85 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/10. 12 Backpropagation Example B V6 Final-yiSwuMP2UIA.zh-CN.vtt 6.84 KB
assets/css/fonts/KaTeX_Size1-Regular.woff 6.82 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.en.vtt 6.81 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/05. Mini Project MC (Parts 0 and 1).html 6.79 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation.html 6.79 KB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Weight Initialization 4-FM6t7AsodGQ.zh-CN.vtt 6.79 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration.html 6.79 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.en.vtt 6.78 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/08. Mini Project MC (Part 2).html 6.78 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/17. Mini Project MC (Part 3).html 6.78 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/21. Mini Project MC (Part 4).html 6.78 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/21. Mini Project 6 Solution.html 6.78 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.pt-BR.vtt 6.77 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/22. Analysis What's Going on in the Weights.html 6.76 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/05. Quiz Max Pooling Layers.html 6.76 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.pt-BR.vtt 6.76 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.pt-BR.vtt 6.75 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method, Part 1.html 6.75 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.en.vtt 6.74 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/04. The Notebooks.html 6.74 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. Introducing Ortal .html 6.73 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.en.vtt 6.73 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/14. Policy Improvement.html 6.73 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation.html 6.73 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return.html 6.72 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration.html 6.72 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration.html 6.71 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/07. Ornstein–Uhlenbeck Noise.html 6.7 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 07 FeedForward B V3-kTYbTVh1d0k.zh-CN.vtt 6.7 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Meet Andrew.html 6.67 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. CrossEntropy V1-1BnhC6e0TFw.zh-CN.vtt 6.66 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/07. Mini Project 1 Solution.html 6.66 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution.html 6.66 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/13. Mini Project 3 Solution.html 6.66 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/18. Mini Project 5 Solution.html 6.66 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. Recall.html 6.65 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/04. Quiz Space Representations.html 6.65 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.pt-BR.vtt 6.64 KB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution.html 6.62 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/diagonal-line-2.png 6.62 KB
Part 08-Module 02-Lesson 01_MiniFlow/10. Cost Solution.html 6.59 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction.html 6.59 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/06. Build a GAN.html 6.58 KB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.en.vtt 6.58 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions.html 6.57 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. Regularization.html 6.57 KB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications.html 6.56 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2.html 6.56 KB
Part 01-Module 01-Lesson 03_Anaconda/07. More environment actions.html 6.54 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.en.vtt 6.54 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Underfitting And Overfitting-xj4PlXMsN-Y.zh-CN.vtt 6.54 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/16. Understanding Inefficiencies in our Network.html 6.54 KB
assets/css/fonts/KaTeX_Size2-Regular.woff 6.53 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/01. Transfer Learning Intro.html 6.52 KB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/01. CNN Project.html 6.51 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.pt-BR.vtt 6.51 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.pt-BR.vtt 6.5 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. Precision.html 6.49 KB
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices.html 6.48 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. Deconvolution-sX_AxtB6CHI.zh-CN.vtt 6.47 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement.html 6.46 KB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression.html 6.46 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/11. Implementation.html 6.46 KB
Part 08-Module 01-Lesson 02_Regression/01. Intro.html 6.45 KB
Part 01-Module 01-Lesson 03_Anaconda/09. On Python versions at Udacity.html 6.45 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation.html 6.45 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.en.vtt 6.45 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration.html 6.45 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers.html 6.45 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha, Part 1.html 6.45 KB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error.html 6.45 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values.html 6.44 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean.html 6.44 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/07. Matrix Multiplication Part 2.html 6.44 KB
Part 08-Module 01-Lesson 02_Regression/04. Fitting a Line Through Data.html 6.44 KB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error.html 6.44 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/03. MC Prediction State Values.html 6.44 KB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions.html 6.43 KB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.pt-BR.vtt 6.43 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/14. Understanding Neural Noise.html 6.42 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.zh-CN.vtt 6.42 KB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick.html 6.42 KB
Part 08-Module 01-Lesson 02_Regression/22. Regularization.html 6.42 KB
Part 08-Module 01-Lesson 02_Regression/06. Absolute Trick-DJWjBAqSkZw.pt-BR.vtt 6.41 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network.html 6.41 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. Other Generative Models, How GANs Work-MF0QCP1OC9I.zh-CN.vtt 6.41 KB
Part 08-Module 01-Lesson 02_Regression/05. Moving a Line.html 6.41 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/10. Converting notebooks.html 6.41 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask.html 6.41 KB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick.html 6.41 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/19. Further Noise Reduction.html 6.4 KB
Part 05_Generative Adversarial Networks/Module 01_Generative Adversarial Networks/Lesson 03_Generate Faces/data.json 6.4 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Backpropagation V2-1SmY3TZTyUk.zh-CN.vtt 6.39 KB
Part 08-Module 01-Lesson 02_Regression/25. Outro.html 6.38 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.en.vtt 6.38 KB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym.html 6.38 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/05. Framing the Problem.html 6.37 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Conclusion.html 6.37 KB
Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression.html 6.36 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.zh-CN.vtt 6.34 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.pt-BR.vtt 6.34 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.pt-BR.vtt 6.32 KB
Part 01-Module 01-Lesson 03_Anaconda/08. Best practices.html 6.32 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/01. Semi-supervised Learning.html 6.32 KB
assets/css/fonts/KaTeX_Size4-Regular.woff 6.3 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/01. Embeddings Intro.html 6.3 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/11. Implementing Deep Q-Learning.html 6.29 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.pt-BR.vtt 6.27 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/05. An Iterative Method-AX-hG3KvwzY.zh-CN.vtt 6.27 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. M2L3 05 V1-eZxxNNIZuwA.zh-CN.vtt 6.27 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/10. Quiz Action-Value Functions.html 6.26 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.zh-CN.vtt 6.26 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. Building VGGNet-615SslQiGvo.pt-BR.vtt 6.26 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/10. DQN Improvements.html 6.23 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.pt-BR.vtt 6.21 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/03. How GANs work.html 6.2 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.pt-BR.vtt 6.19 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.en.vtt 6.17 KB
Part 02-Module 01-Lesson 08_TensorFlow/10. Lab NotMNIST in TensorFlow.html 6.16 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.en.vtt 6.16 KB
Part 04-Module 01-Lesson 04_Hyperparameters/09. RNN Hyperparameters.html 6.16 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation-WfsDMq-b3y4.pt-BR.vtt 6.15 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/04. Flappy Bird.html 6.15 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/05. Mini Project TD (Parts 0 and 1).html 6.15 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction.html 6.14 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.en.vtt 6.14 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/09. Mini Project TD (Part 2).html 6.13 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/12. Mini Project TD (Part 3).html 6.13 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/15. Mini Project TD (Part 4).html 6.13 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/03. Solution Convolutional Layers.html 6.13 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.pt-BR.vtt 6.12 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.en.vtt 6.11 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions.html 6.1 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/10. Convolutional Layers-h5R_JvdUrUI.zh-CN.vtt 6.1 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.zh-CN.vtt 6.08 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/01. Deep Convolutional GANs.html 6.07 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.pt-BR.vtt 6.07 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.pt-BR.vtt 6.07 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.en.vtt 6.07 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.en.vtt 6.06 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy.html 6.05 KB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting-nh8Gwdu19nc.zh-CN.vtt 6.05 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw1-grad-fixed.gif 6.03 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/08. Iterative Policy Evaluation-eDXIL_oOJHI.zh-CN.vtt 6.02 KB
Part 03-Module 01-Lesson 01_Cloud Computing/04. Apply Credits.html 6.01 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning--WmQwYr0DYjY.pt-BR.vtt 6.01 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks.html 6.01 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network-btHVXnICmzQ.pt-BR.vtt 6.01 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.en.vtt 6 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solution.html 6 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.pt-BR.vtt 6 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.en.vtt 5.99 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.en.vtt 5.99 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1.html 5.98 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values.html 5.98 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions.html 5.98 KB
Part 04-Module 01-Lesson 04_Hyperparameters/10. Sources & References.html 5.98 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/11. Discounted Return-opXGNPwwn7g.zh-CN.vtt 5.97 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.en.vtt 5.97 KB
Part 06_Deep Reinforcement Learning/Module 02_Deep Reinforcement Learning/Lesson 05_Teach a Quadcopter How to Fly/rubric.json 5.97 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/03. Batch Normalization.html 5.96 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited.html 5.96 KB
Part 04-Module 01-Lesson 07_Generate TV Scripts/Project Description - Generate TV Scripts.html 5.96 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/04. Games and Equilibria.html 5.96 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis.html 5.96 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.pt-BR.vtt 5.95 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.en.vtt 5.94 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/03. Replay Buffer.html 5.94 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. Introducing Ian Goodfellow.html 5.94 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax.html 5.93 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.pt-BR.vtt 5.93 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward.html 5.93 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.pt-BR.vtt 5.93 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa.html 5.92 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution.html 5.92 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions.html 5.91 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/02. What can you do with GANs.html 5.91 KB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number of Hidden Units Layers.html 5.9 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/05. Practical tips and tricks for training GANs.html 5.9 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2.html 5.89 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3.html 5.89 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning.html 5.89 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.en.vtt 5.89 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Get started with a GAN.html 5.89 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm.html 5.89 KB
Part 03-Module 01-Lesson 05_Autoencoders/01. Autoencoder Lesson Intro.html 5.88 KB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution-Nv_D6DHfEk8.zh-CN.vtt 5.88 KB
Part 03-Module 01-Lesson 01_Cloud Computing/01. Overview.html 5.87 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network.html 5.87 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network.html 5.86 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers.html 5.85 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.en.vtt 5.85 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.pt-BR.vtt 5.84 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/08. Generator Network.html 5.84 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.en.vtt 5.83 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/01. Intro to LSTM.html 5.83 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses.html 5.83 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction.html 5.83 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/16. A Trained GAN.html 5.81 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.pt-BR.vtt 5.81 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation-OJ5wrB7o-pI.zh-CN.vtt 5.81 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.pt-BR.vtt 5.81 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.pt-BR.vtt 5.8 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/img/jupyter-logo.png 5.78 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.pt-BR.vtt 5.78 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution-r3DtohmychE.zh-CN.vtt 5.77 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.en.vtt 5.76 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/img/diagonal-line-1.png 5.76 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/index.html 5.76 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/01. Intro.html 5.75 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/03. DeepTraffic.html 5.75 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.en.vtt 5.73 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces-uHstLeRzaE8.zh-CN.vtt 5.73 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.en.vtt 5.72 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/12. TensorFlow Implementation.html 5.72 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/06. Exercise Discretization.html 5.72 KB
Part 04_Recurrent Networks/Module 01_Recurrent Neural Networks/Lesson 07_Generate TV Scripts/data.json 5.72 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/14. MDPs, Part 2-CUTtQvxKkNw.zh-CN.vtt 5.71 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.71 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.en.vtt 5.71 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/08. Exercise Tile Coding.html 5.71 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.en.vtt 5.7 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.pt-BR.vtt 5.7 KB
Part 02-Module 01-Lesson 08_TensorFlow/17. Outro.html 5.69 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/06. Solution Max Pooling Layers.html 5.69 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/26. Transfer Learning in Keras-HsIAznMM1LA.zh-CN.vtt 5.69 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.pt-BR.vtt 5.69 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. The Use Gate.html 5.69 KB
assets/css/fonts/KaTeX_Size1-Regular.woff2 5.69 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent.html 5.68 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.pt-BR.vtt 5.67 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.pt-BR.vtt 5.67 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.pt-BR.vtt 5.66 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World.html 5.65 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/Project Description - Teach a Quadcopter How to Fly.html 5.65 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.pt-BR.vtt 5.64 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.en.vtt 5.64 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. The Learn Gate.html 5.64 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/07. Experience Replay.html 5.63 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/04. Overfitting and Underfitting.html 5.63 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/03. TD Prediction TD(0).html 5.62 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0).html 5.62 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.en.vtt 5.62 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/01. Deep Reinforcement Learning-GPjK124RU5g.zh-CN.vtt 5.62 KB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.en.vtt 5.61 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/inputs-matrix.png 5.61 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.en.vtt 5.61 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.pt-BR.vtt 5.61 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.en.vtt 5.6 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/04. Character-wise RNN Notebook.html 5.6 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network.html 5.6 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/04. DCGAN Implementation.html 5.6 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/13. MC Control Policy Improvement-2RKH-BInX7s.zh-CN.vtt 5.59 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning.html 5.59 KB
Part 02-Module 01-Lesson 07_Keras/05. Optimizers in Keras.html 5.58 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization.html 5.58 KB
Part 08-Module 02-Lesson 01_MiniFlow/15. Outro.html 5.58 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Early Stopping.html 5.57 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. The Forget Gate.html 5.57 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/01. Instructor.html 5.56 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient.html 5.56 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning.html 5.55 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate Decay.html 5.54 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation.html 5.54 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/07. Regularization 2.html 5.54 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets.html 5.54 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart.html 5.53 KB
Part 04-Module 01-Lesson 04_Hyperparameters/03. Learning Rate.html 5.52 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.en.vtt 5.52 KB
Part 01-Module 01-Lesson 03_Anaconda/02. Introduction.html 5.52 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.pt-BR.vtt 5.52 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima.html 5.52 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.52 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.en-US.vtt 5.52 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/03. Discrete vs. Continuous Spaces.html 5.52 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/05. Building The Generator And Discriminator.html 5.51 KB
Part 07_Guaranteed Admission into your next Nanodegree/Module 01_Guaranteed Admission into your next Nanodegree/Lesson 01_Enroll in your next Nanodegree program/data.json 5.51 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other architectures.html 5.51 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/11. Linear Function Approximation.html 5.51 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.en.vtt 5.51 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/09. Prerequisites.html 5.5 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum.html 5.49 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction.html 5.49 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning.html 5.48 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing.html 5.48 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout.html 5.48 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/01. Mean Squared Error Function.html 5.47 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/06. Code cells.html 5.47 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. The Remember Gate.html 5.47 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/06. Matrix Multiplication Part 1.html 5.46 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.pt-BR.vtt 5.46 KB
Part 02-Module 01-Lesson 07_Keras/01. Intro.html 5.46 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You Will Build.html 5.45 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/02. Quadcopter workspace.html 5.44 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.pt-BR.vtt 5.44 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/02. Semi-Supervised Classification with GANs.html 5.43 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.en.vtt 5.43 KB
assets/css/fonts/KaTeX_Size2-Regular.woff2 5.43 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training The Network-nknJ3Xu3ld0.zh-CN.vtt 5.42 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/07. Model Optimization Exercise.html 5.42 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN.html 5.42 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.en-US.vtt 5.42 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.en.vtt 5.42 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions.html 5.42 KB
Part 08-Module 02-Lesson 01_MiniFlow/01. Welcome to MiniFlow.html 5.41 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/index.html 5.41 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization.html 5.41 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution.html 5.4 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions.html 5.4 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/05. Implementing a Character-wise RNN.html 5.4 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding.html 5.4 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.en.vtt 5.4 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.en.vtt 5.39 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution.html 5.39 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning.html 5.39 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting Set Up.html 5.39 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/25. Transfer Learning-LHG5FltaR6I.zh-CN.vtt 5.39 KB
Part 05-Module 01-Lesson 03_Generate Faces/Project Description - Generate Faces.html 5.39 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding.html 5.39 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/01. Intro.html 5.38 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network.html 5.38 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.en.vtt 5.37 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/08. CNNs - Additional Resources.html 5.37 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.en.vtt 5.37 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/06. Model Loss Exercise.html 5.37 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/10. Model Loss Solution.html 5.37 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/13. Build the Network Solution.html 5.37 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.en.vtt 5.36 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning.html 5.36 KB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.en.vtt 5.36 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary.html 5.36 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.pt-BR.vtt 5.35 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.en.vtt 5.35 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.en.vtt 5.35 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output and Loss Solutions.html 5.35 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dsdl1.png 5.34 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/03. Gradient Descent The Math.html 5.33 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.en.vtt 5.33 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 41 Feedforward FIX V2-hVCuvMGOfyY.zh-CN.vtt 5.33 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution.html 5.33 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/01. Introduction.html 5.32 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.en.vtt 5.32 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/25. 23 From RNNs To LSTMs V4 Final-MsqybcWmzGY.zh-CN.vtt 5.32 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.pt-BR.vtt 5.32 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/08. Keyboard shortcuts.html 5.31 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/05. Books to Read.html 5.31 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.en.vtt 5.3 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell-ajC-5uWB8S4.zh-CN.vtt 5.3 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-wise RNNs.html 5.3 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep.html 5.3 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution.html 5.3 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.zh-CN.vtt 5.29 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.pt-BR.vtt 5.29 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.en.vtt 5.29 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence Batching.html 5.29 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build the Network.html 5.29 KB
Part 03-Module 01-Lesson 01_Cloud Computing/02. Create an AWS Account.html 5.29 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/12. Trained Semi-Supervised GAN-9yWYZDX8-O8.zh-CN.vtt 5.28 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Precision and Recall.html 5.28 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example.html 5.27 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.en.vtt 5.27 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies.html 5.27 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/01. Instructor.html 5.26 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss.html 5.26 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/06. Deep Q Network-GgtR_d1OB-M.zh-CN.vtt 5.25 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.pt-BR.vtt 5.25 KB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources.html 5.25 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up.html 5.25 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output.html 5.24 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. M2L3 03 V2-TePX-0Bs23E.zh-CN.vtt 5.24 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations.html 5.24 KB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size.html 5.24 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/07. LSTM Cell.html 5.24 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/10. Generator and Discriminator Solutions-9By2pAck044.pt-BR.vtt 5.24 KB
Part 02-Module 01-Lesson 07_Keras/04. Lab Student Admissions in Keras.html 5.23 KB
Part 08-Module 01-Lesson 02_Regression/08. Gradient Descent-4s4x9h6AN5Y.pt-BR.vtt 5.23 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/index.html 5.23 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality.html 5.23 KB
Part 04-Module 01-Lesson 04_Hyperparameters/01. Introducing Jay.html 5.22 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies.html 5.21 KB
Part 02-Module 01-Lesson 07_Keras/08. Lab IMDB Data in Keras.html 5.21 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.en.vtt 5.21 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/03. Installing Jupyter Notebook.html 5.2 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.pt-BR.vtt 5.19 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/01. Intro.html 5.19 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/09. Further Reading.html 5.17 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2.html 5.17 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion Matrix 2.html 5.17 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/06. MC Prediction Action Values-08tLtbh0xLs.zh-CN.vtt 5.17 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.en.vtt 5.16 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/09. Matrix Transposes.html 5.16 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/12. Finishing up.html 5.16 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/02. Data Dimensions.html 5.16 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building and Training the Network.html 5.16 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting it All Together.html 5.15 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.en.vtt 5.14 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/09. RNN Output-RkanDkcrTxs.zh-CN.vtt 5.14 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.pt-BR.vtt 5.13 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.zh-CN.vtt 5.13 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.pt-BR.vtt 5.13 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.en.vtt 5.12 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. Architecture of LSTM.html 5.11 KB
Part 01-Module 01-Lesson 03_Anaconda/01. Instructor.html 5.1 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameter Solutions.html 5.09 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/05. DCGAN and the Generator.html 5.09 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.en.vtt 5.08 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution.html 5.08 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.en.vtt 5.07 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. Basics of LSTM.html 5.07 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN vs LSTM.html 5.06 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.pt-BR.vtt 5.06 KB
assets/css/fonts/KaTeX_Size4-Regular.woff2 5.06 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.pt-BR.vtt 5.06 KB
Part 03-Module 01-Lesson 04_Weight Initialization/01. Weight Initialization Intro.html 5.06 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.pt-BR.vtt 5.06 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.pt-BR.vtt 5.06 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/12. 14 RNN A V4 Final-ofbnDxGSUcg.zh-CN.vtt 5.05 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution.html 5.05 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.en.vtt 5.05 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors.html 5.05 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. DL 46 Calculating The Gradient 2 V2 (2)-7lidiTGIlN4.zh-CN.vtt 5.05 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution-MAUM_mV_lj8.zh-CN.vtt 5.04 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.en.vtt 5.04 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/12. Outro LSTM.html 5.03 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/02. DCGAN Architecture.html 5.03 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator.html 5.02 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.pt-BR.vtt 5 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Classifier Solution.html 5 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/02. Transfer Learning with VGGNet.html 5 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.pt-BR.vtt 4.99 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/08. Goals and Rewards, Part 2-pVIFc72VYH8.zh-CN.vtt 4.99 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets.html 4.99 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Classifier.html 4.98 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training solution.html 4.98 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building the Network Solution.html 4.98 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training.html 4.98 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation Solution.html 4.98 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/07. DL 06 Perceptron Definition Fix V2-hImSxZyRiOw.zh-CN.vtt 4.98 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/index.html 4.98 KB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction.html 4.97 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. VGGNet Solution.html 4.96 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 04 RNN FFNN Reminder A V7 Final-_vrp2lZjXf0.zh-CN.vtt 4.96 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/05. Data Preparation.html 4.96 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 4.96 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.zh-CN.vtt 4.96 KB
Part 05-Module 01-Lesson 03_Generate Faces/03. Face Generation Workspace.html 4.96 KB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.ar.vtt 4.95 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/11. ROC Curve.html 4.94 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.zh-CN.vtt 4.94 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/03. VGGNet.html 4.94 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/02. Implementing Word2Vec.html 4.93 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/03. Subsampling Solution.html 4.92 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building the Network.html 4.92 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When accuracy won't work.html 4.92 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. Actor-Critic with Advantage.html 4.91 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/03. How Computers Interpret Images-V4f6p6uRhu8.zh-CN.vtt 4.91 KB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/02. Project Workspace.html 4.91 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/index.html 4.9 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling.html 4.9 KB
Part 06-Module 01-Lesson 01_Introduction to RL/06. Reference Guide.html 4.89 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution.html 4.89 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results.html 4.89 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.en.vtt 4.89 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/24. RNN Summary-nXP0oGGRrO8.zh-CN.vtt 4.89 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.pt-BR.vtt 4.88 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches.html 4.88 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.en.vtt 4.87 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. Actor-Critic Methods.html 4.86 KB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/02. Dog Breed Workspace.html 4.86 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. Two Function Approximators.html 4.86 KB
Part 03-Module 01-Lesson 04_Weight Initialization/06. Additional Material.html 4.85 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. Advantage Function.html 4.85 KB
Part 04-Module 01-Lesson 07_Generate TV Scripts/02. TV Script Workspace.html 4.85 KB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction.html 4.84 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.pt-BR.vtt 4.84 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. The Actor and The Critic.html 4.84 KB
Part 08-Module 01-Lesson 02_Regression/index.html 4.84 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/05. Building the RNN.html 4.84 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. A Better Score Function.html 4.84 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.en.vtt 4.82 KB
Part 03-Module 01-Lesson 01_Cloud Computing/07. More Resources.html 4.81 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.en.vtt 4.81 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/02. The Setting, Revisited-V6Q1uF8a6kA.zh-CN.vtt 4.79 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.en.vtt 4.79 KB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/03. Mini Project.html 4.79 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/18. CNNs in Keras Practical Example-faFvmGDwXX0.zh-CN.vtt 4.78 KB
Part 03-Module 01-Lesson 05_Autoencoders/06. Convolutional Autoencoders Solution.html 4.78 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/01. Introduction.html 4.77 KB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.pt-BR.vtt 4.77 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/08. Fixed Q Targets-SWpyiEezfp4.zh-CN.vtt 4.77 KB
Part 02-Module 01-Lesson 07_Keras/06. Mini Project Intro.html 4.77 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/01. Welcome to the Deep Learning Nanodegree Program.html 4.77 KB
Part 04-Module 01-Lesson 04_Hyperparameters/05. Minibatch Size-GrrO1NFxaW8.zh-CN.vtt 4.77 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/24. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.76 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/02. Confusion Matrix-Question 1-9GLNjmMUB_4.pt-BR.vtt 4.76 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.pt-BR.vtt 4.75 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.zh-CN.vtt 4.75 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/03. GPU Workspace Playground.html 4.75 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/06. Model Validation in Keras-002jNXSM6CU.zh-CN.vtt 4.74 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/index.html 4.74 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/10. Training And Testing-NLPtmQjGYCA.zh-CN.vtt 4.73 KB
Part 03-Module 01-Lesson 05_Autoencoders/04. Simple Autoencoder Solution.html 4.72 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/03. Policy Function Approximation.html 4.72 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. Monte Carlo Policy Gradients.html 4.72 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/07. Constrained Policy Gradients.html 4.72 KB
Part 03-Module 01-Lesson 05_Autoencoders/05. Convolutional Autoencoders.html 4.72 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.en.vtt 4.72 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/02. Why Policy-Based Methods.html 4.71 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.en.vtt 4.71 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. Stochastic Policy Search.html 4.71 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.en.vtt 4.71 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. Policy-Based Methods.html 4.7 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.pt-BR.vtt 4.7 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/02. Applications of CNNs-HrYNL_1SV2Y.zh-CN.vtt 4.7 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/index.html 4.7 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/05. Policy Gradients.html 4.7 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.en.vtt 4.69 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.en.vtt 4.67 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. Recap.html 4.67 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/06. Training the Network.html 4.67 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs. Continuous-Rm2KxFaPiJg.zh-CN.vtt 4.67 KB
assets/css/fonts/KaTeX_Size3-Regular.woff 4.66 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary.html 4.66 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.pt-BR.vtt 4.66 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/02. Sentiment RNN.html 4.65 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing.html 4.65 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/05. Q-Learning-AI5gLgYMSq8.zh-CN.vtt 4.65 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.en.vtt 4.65 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.pt-BR.vtt 4.65 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/05. Model Complexity Graph-NnS0FJyVcDQ.zh-CN.vtt 4.65 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.en.vtt 4.64 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/15. Pooling Layers-OkkIZNs7Cyc.zh-CN.vtt 4.64 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/16. 18 RNN Example V5 Final-MDLk3fhpTx0.zh-CN.vtt 4.63 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.pt-BR.vtt 4.63 KB
Part 03-Module 01-Lesson 04_Weight Initialization/03. Uniform Distribution.html 4.63 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/09. Building And Training The Network-nXKk9GI4X14.pt-BR.vtt 4.63 KB
Part 03-Module 01-Lesson 04_Weight Initialization/05. Normal Distribution.html 4.63 KB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders.html 4.62 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/07. Solutions.html 4.62 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/04. M2L3 04 V1-QicxmyE5vTo.zh-CN.vtt 4.62 KB
Part 03-Module 01-Lesson 04_Weight Initialization/02. Ones and Zeros.html 4.62 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/13. 16 RNN B V4 Final-wsif3p5t7CI.zh-CN.vtt 4.62 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Combinando modelos-Boy3zHVrWB4.zh-CN.vtt 4.61 KB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Too Small.html 4.61 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.zh-CN.vtt 4.61 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.en.vtt 4.6 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/15. Training Losses and Optimizers Solutions-HlABZ9Q7xEo.zh-CN.vtt 4.59 KB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project.html 4.59 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/03. LSTM Basics-gjb68a4XsqE.zh-CN.vtt 4.59 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.pt-BR.vtt 4.59 KB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.pt-BR.vtt 4.58 KB
Part 05-Module 01-Lesson 03_Generate Faces/01. One Project Away!.html 4.58 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.en.vtt 4.58 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.en.vtt 4.58 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/04. Data Prep-P5hOx09mwaM.pt-BR.vtt 4.58 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/03. Introducing Semi-Supervised Learning-tnCClNy5z5c.pt-BR.vtt 4.57 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.pt-BR.vtt 4.56 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.pt-BR.vtt 4.56 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.zh-CN.vtt 4.56 KB
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Introduction.html 4.55 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.pt-BR.vtt 4.55 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.pt-BR.vtt 4.54 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.en.vtt 4.53 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/06. 06 FeedForward A V7 Final-4rCfnWbx8-0.zh-CN.vtt 4.52 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/10. MC Control Incremental Mean-E2RITH-2NUE.zh-CN.vtt 4.52 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.pt-BR.vtt 4.51 KB
Part 05-Module 01-Lesson 03_Generate Faces/02. Project Introduction.html 4.51 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.en.vtt 4.5 KB
Part 08-Module 01-Lesson 02_Regression/11. Minimizing Error Functions-RbT2TXN_6tY.en.vtt 4.5 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/02. Workspace Playground.html 4.49 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.pt-BR.vtt 4.49 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.en.vtt 4.48 KB
Part 06-Module 01-Lesson 01_Introduction to RL/03. The Setting.html 4.47 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.pt-BR.vtt 4.47 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.pt-BR.vtt 4.47 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.en.vtt 4.46 KB
Part 03-Module 01-Lesson 05_Autoencoders/03. A Simple Autoencoder.html 4.45 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/03. Data Preprocessing-h4-LwZU9_k8.zh-CN.vtt 4.45 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.en.vtt 4.41 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.en.vtt 4.41 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/10. Cumulative Reward-ysriH65lV9o.zh-CN.vtt 4.4 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.en.vtt 4.4 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.pt-BR.vtt 4.38 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/index.html 4.37 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 Q Softmax V2-RC_A9Tu99y4.zh-CN.vtt 4.37 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.en.vtt 4.36 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.en.vtt 4.35 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.zh-CN.vtt 4.34 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/09. Discriminator Solution-_X8ssUzu_Bo.zh-CN.vtt 4.33 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.pt-BR.vtt 4.33 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/index.html 4.33 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.pt-BR.vtt 4.32 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.pt-BR.vtt 4.32 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.en.vtt 4.31 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.pt-BR.vtt 4.29 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.pt-BR.vtt 4.27 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.en.vtt 4.27 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.pt-BR.vtt 4.26 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.en.vtt 4.24 KB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.en.vtt 4.24 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.pt-BR.vtt 4.24 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/08. Transforming Text into Numbers-7rHBU5cbePE.pt-BR.vtt 4.24 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/05. Categorical Cross-Entropy-3sDYifgjFck.zh-CN.vtt 4.24 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.pt-BR.vtt 4.24 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/02. RNN Vs LSTM-70MgF-IwAr8.zh-CN.vtt 4.22 KB
Part 02-Module 01-Lesson 08_TensorFlow/index.html 4.22 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/index.html 4.21 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.en.vtt 4.21 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.pt-BR.vtt 4.2 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/img/maze.png 4.2 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.pt-BR.vtt 4.2 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.en.vtt 4.18 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.pt-BR.vtt 4.17 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/08. Training The Network -P-LXQPVXl4A.zh-CN.vtt 4.16 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. Error Function-V5kkHldUlVU.zh-CN.vtt 4.15 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/06. Building The Network-fhSb5c6UX6M.zh-CN.vtt 4.12 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.en.vtt 4.12 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.en.vtt 4.11 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.en.vtt 4.11 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/20. Cross Entropy 1-iREoPUrpXvE.zh-CN.vtt 4.11 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/13. Batch vs Stochastic Gradient Descent-2p58rVgqsgo.zh-CN.vtt 4.1 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.en.vtt 4.09 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/05. Discretization-j2eZyUpy--E.zh-CN.vtt 4.06 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.pt-BR.vtt 4.06 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.pt-BR.vtt 4.06 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/08. Dropout-Ty6K6YiGdBs.zh-CN.vtt 4.06 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/index.html 4.06 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.en.vtt 4.06 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/02. 01 RNN Intro V6 Final-AIQEqg6F38A.zh-CN.vtt 4.05 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.pt-BR.vtt 4.05 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.pt-BR.vtt 4.03 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/02. Policies-hc3LrvaC13U.zh-CN.vtt 4.03 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/05. 05 RNN FFNN Reminder B V6 Final-FfPjaGcZODc.zh-CN.vtt 4.03 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.en.vtt 4.03 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/22. DL 27 Multi-Class Cross Entropy 2 Fix-keDswcqkees.zh-CN.vtt 4.01 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.pt-BR.vtt 4 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.en.vtt 4 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.en.vtt 4 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.pt-BR.vtt 3.98 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/index.html 3.97 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/04. Element-wise Matrix Operations-vjUykZyzko4.zh-CN.vtt 3.97 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/10. Mini Project 2 Solution-45ihpPaeO8E.pt-BR.vtt 3.95 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/index.html 3.95 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.en.vtt 3.95 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/09. Action-Value Functions-KJLaRfOOPGA.zh-CN.vtt 3.94 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.en.vtt 3.94 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.pt-BR.vtt 3.93 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw1-chain.png 3.92 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.en.vtt 3.91 KB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.en.vtt 3.91 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2-grad-fixed.gif 3.9 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.en.vtt 3.9 KB
Part 08-Module 02-Lesson 01_MiniFlow/index.html 3.89 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/index.html 3.88 KB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.en.vtt 3.87 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.en.vtt 3.87 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/index.html 3.87 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/05. State-Value Functions-llakAjwox_8.zh-CN.vtt 3.86 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.pt-BR.vtt 3.86 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.en.vtt 3.85 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/24. Gradient Descent-rhVIF-nigrY.en.vtt 3.85 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/08. Optimality-j231aRV74QM.zh-CN.vtt 3.85 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/index.html 3.85 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/09. Deep Q-Learning Algorithm-MqTXoCxQ_eY.zh-CN.vtt 3.84 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.pt-BR.vtt 3.84 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/10. TD Control Sarsamax-4DxoYuR7aZ4.zh-CN.vtt 3.83 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.pt-BR.vtt 3.83 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.en.vtt 3.83 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/img/screen-shot-2018-01-02-at-2.44.44-pm.png 3.83 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/09. Training Results-uISA5ns47s8.zh-CN.vtt 3.83 KB
Part 08-Module 01-Lesson 02_Regression/img/m.gif 3.82 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.en.vtt 3.82 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.pt-BR.vtt 3.82 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.en.vtt 3.79 KB
Part 01-Module 01-Lesson 05_Matrix Math and NumPy Refresher/index.html 3.78 KB
Part 08-Module 01-Lesson 02_Regression/07. Square Trick-AGZEq-yQgRM.pt-BR.vtt 3.78 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.en.vtt 3.78 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/04. Making Batches-jx7qwdw-94k.zh-CN.vtt 3.77 KB
assets/css/fonts/KaTeX_Size3-Regular.woff2 3.77 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.en.vtt 3.76 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.en.vtt 3.76 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/index.html 3.76 KB
assets/css/styles.css 3.76 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. 10 Backpropagation Example A V3 Final-3k72z_WaeXg.zh-CN.vtt 3.76 KB
Part 08-Module 01-Lesson 02_Regression/23. Neural Network Regression-aUJCBqBfEnI.pt-BR.vtt 3.74 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/12. Stride and Padding-0r9o8hprDXQ.zh-CN.vtt 3.74 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.pt-BR.vtt 3.74 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.en.vtt 3.73 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dl2dw2-grad.png 3.72 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/index.html 3.71 KB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.pt-BR.vtt 3.71 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/06. Batching Data Solution-o3nBxHJLQcc.zh-CN.vtt 3.7 KB
Part 06-Module 02-Lesson 05_Teach a Quadcopter How to Fly/index.html 3.69 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/index.html 3.68 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.pt-BR.vtt 3.68 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/18. 20 RNN BPTT B V5 Final-bUU9BEQw0IA.zh-CN.vtt 3.68 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/02. Andrew Trask - Intro-da1I0mea1jQ.pt-BR.vtt 3.68 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 2-6nUUeQ9AeUA.zh-CN.vtt 3.67 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.pt-BR.vtt 3.67 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.en.vtt 3.67 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.pt-BR.vtt 3.66 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.pt-BR.vtt 3.66 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/index.html 3.66 KB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.pt-BR.vtt 3.66 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/10. Function Approximation-UTGWVY6jEdg.zh-CN.vtt 3.65 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.en.vtt 3.64 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/index.html 3.64 KB
Part 04-Module 01-Lesson 04_Hyperparameters/index.html 3.64 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/07. Getting Started with GANs-QA2ntKUha4g.zh-CN.vtt 3.63 KB
Part 04-Module 01-Lesson 04_Hyperparameters/08. RNN Hyperparameters-yQvnv7l_aUo.zh-CN.vtt 3.62 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.zh-CN.vtt 3.62 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.en.vtt 3.61 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/index.html 3.61 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.pt-BR.vtt 3.61 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/index.html 3.61 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.en.vtt 3.61 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/04. Temporal Difference Learning-lpmDi0QeUm8.zh-CN.vtt 3.6 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/28. Gradient Descent Vs Perceptron Algorithm-uL5LuRPivTA.zh-CN.vtt 3.6 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.pt-BR.vtt 3.6 KB
Part 03-Module 01-Lesson 04_Weight Initialization/04. Weight Initialization 3-JIQl0jMpdsI.zh-CN.vtt 3.57 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/index.html 3.56 KB
Part 03-Module 01-Lesson 03_CNNs in TensorFlow/index.html 3.55 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dl1dw1-grad.png 3.54 KB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.en.vtt 3.54 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/index.html 3.53 KB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.zh-CN.vtt 3.52 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/22. Groundbreaking CNN Architectures-ddrB-mhMfkY.zh-CN.vtt 3.52 KB
Part 01-Module 01-Lesson 03_Anaconda/index.html 3.52 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.en.vtt 3.52 KB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.en.vtt 3.52 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/17. 19 RNN BPTT A V6 Final-eE2L3-2wKac.zh-CN.vtt 3.52 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/10. Hyperparameters Solution-Rt8MlVDtpi8.pt-BR.vtt 3.51 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. 07 Perceptron Algorithm Trick-lif_qPmXvWA.zh-CN.vtt 3.5 KB
Part 02-Module 01-Lesson 07_Keras/index.html 3.47 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.en.vtt 3.45 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.en.vtt 3.45 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.en.vtt 3.45 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.zh-CN.vtt 3.45 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/12. Build The Network-RVNjDlWTBQU.zh-CN.vtt 3.45 KB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.en.vtt 3.44 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.pt-BR.vtt 3.44 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.en.vtt 3.43 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/index.html 3.43 KB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.pt-BR.vtt 3.42 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/23. Value Iteration-XNeQn8N36y8.zh-CN.vtt 3.42 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/04. MLPs For Image Classification-TIFStebu530.zh-CN.vtt 3.42 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.pt-BR.vtt 3.41 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.ar.vtt 3.41 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.en.vtt 3.41 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.en.vtt 3.4 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/cost.png 3.39 KB
Part 08-Module 01-Lesson 02_Regression/18. Closed Form Solution-G3fRVgLa5gI.pt-BR.vtt 3.39 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.en.vtt 3.39 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/13. MDPs, Part 1-NBWbluSbxPg.zh-CN.vtt 3.38 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.pt-BR.vtt 3.38 KB
Part 03-Module 01-Lesson 01_Cloud Computing/index.html 3.37 KB
Part 03-Module 01-Lesson 05_Autoencoders/index.html 3.37 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.pt-BR.vtt 3.37 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/11. Building the Network-5sZkRSHfiAE.pt-BR.vtt 3.37 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/05. Linear Boundaries-X-uMlsBi07k.zh-CN.vtt 3.36 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/index.html 3.35 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.en.vtt 3.35 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/07. Tile Coding-BRs7AnTZ_8k.zh-CN.vtt 3.34 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/08. Building The Network Solution-pkBAhQ2Ki-8.zh-CN.vtt 3.34 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.en.vtt 3.34 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.en.vtt 3.34 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.pt-BR.vtt 3.34 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/23. Visualizing CNNs-mnqS_EhEZVg.zh-CN.vtt 3.33 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/13. Training Losses-IaAeDrXMEcU.zh-CN.vtt 3.33 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.en.vtt 3.33 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/19.png 3.32 KB
Part 03-Module 01-Lesson 04_Weight Initialization/index.html 3.32 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/11. Optimal Policies-2rguYpVyCto.zh-CN.vtt 3.32 KB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/index.html 3.3 KB
Part 08-Module 01-Lesson 02_Regression/09. Mean Absolute Error-vLKiY0Ehors.pt-BR.vtt 3.3 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/05. RL M2L4 05 Advantage Function RENDER V1 V2-vpLmzKqcgfc.zh-CN.vtt 3.3 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.zh-CN.vtt 3.3 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.zh-CN.vtt 3.3 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.en.vtt 3.3 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/03. 02 RNN History V4 Final-HbxAnYUfRnc.zh-CN.vtt 3.29 KB
Part 05-Module 01-Lesson 03_Generate Faces/index.html 3.29 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.pt-BR.vtt 3.29 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.en.vtt 3.29 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.en.vtt 3.28 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.pt-BR.vtt 3.28 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/11. Perceptron Agorithm Pseudocode-p8Q3yu9YqYk.pt-BR.vtt 3.27 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/26. Conclusion-WhpE_8sTt-0.zh-CN.vtt 3.26 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.en.vtt 3.25 KB
Part 03-Module 01-Lesson 07_CNN Project Dog Breed Classifier/index.html 3.25 KB
Part 06-Module 01-Lesson 01_Introduction to RL/index.html 3.24 KB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.en.vtt 3.23 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/18. MC Control Constant-alpha-QFV1nI9Zpoo.zh-CN.vtt 3.23 KB
Part 01-Module 01-Lesson 03_Anaconda/02. Why Anaconda-VXukXZv7SCQ.pt-BR.vtt 3.23 KB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.en.vtt 3.22 KB
Part 04-Module 01-Lesson 07_Generate TV Scripts/index.html 3.22 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/02. Neural Nets as Value Functions-cBi7vLrk8QQ.zh-CN.vtt 3.22 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.pt-BR.vtt 3.21 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dl2ds-grad.png 3.21 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/mse.png 3.21 KB
Part 01-Module 01-Lesson 02_Applying Deep Learning/index.html 3.19 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.pt-BR.vtt 3.16 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.pt-BR.vtt 3.16 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/06. Generator Solution-jyPwUEZg05Q.pt-BR.vtt 3.15 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.pt-BR.vtt 3.15 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.pt-BR.vtt 3.13 KB
Part 02-Module 01-Lesson 04_GPU Workspaces Demo/index.html 3.13 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.en.vtt 3.13 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.pt-BR.vtt 3.13 KB
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/07. When do MLPs (not) work well-deMeuLdZN3Q.zh-CN.vtt 3.11 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.pt-BR.vtt 3.09 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.pt-BR.vtt 3.09 KB
Part 06-Module 01-Lesson 07_Solve OpenAI Gym's Taxi-v2 Task/index.html 3.09 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.zh-CN.vtt 3.08 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.en.vtt 3.08 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.en.vtt 3.08 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.en.vtt 3.07 KB
Part 05-Module 01-Lesson 04_Semi-Supervised Learning/11. Model Optimizer Solution-_Qhz9SbR7xY.zh-CN.vtt 3.06 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.pt-BR.vtt 3.06 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.en.vtt 3.05 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/11. Output And Loss Solutions-CT8hcU7FmGc.zh-CN.vtt 3.05 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Layers-pg99FkXYK0M.zh-CN.vtt 3.04 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.en.vtt 3.04 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.pt-BR.vtt 3.04 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.en.vtt 3.04 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/02. Character-Wise RNN-dXl3eWCGLdU.zh-CN.vtt 3.04 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.pt-BR.vtt 3.03 KB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.pt-BR.vtt 3.02 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.pt-BR.vtt 3.02 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.en.vtt 3.02 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/06. Data Preparation-WEtKkHlhhZA.pt-BR.vtt 3.01 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/06. The Reward Hypothesis-uAqNwgZ49JE.zh-CN.vtt 3.01 KB
Part 07-Module 01-Lesson 01_Enroll in your next Nanodegree program/index.html 3 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.en.vtt 3 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/06. Bellman Equations-UgIaDMvSdUo.zh-CN.vtt 2.99 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.zh-CN.vtt 2.98 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.en.vtt 2.97 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/08. Building The Classifier-6ifxRQ_gL7w.zh-CN.vtt 2.95 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.en.vtt 2.95 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.en.vtt 2.94 KB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.en.vtt 2.94 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-error.gif 2.93 KB
Part 06-Module 01-Lesson 01_Introduction to RL/02. Applications-CV6B84mKRNM.zh-CN.vtt 2.91 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.en.vtt 2.91 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/20. Truncated Policy Iteration-a-RvCxlPMho.zh-CN.vtt 2.9 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/12. Building the Network Solution-Ikp3rVzG970.pt-BR.vtt 2.89 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.en.vtt 2.88 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.zh-CN.vtt 2.88 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Calculating The Gradient 1 -tVuZDbUrzzI.zh-CN.vtt 2.88 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/11. Building a Neural Network-aM2k7RTjjJI.pt-BR.vtt 2.88 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.en.vtt 2.84 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.pt-BR.vtt 2.84 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/02. Introduction-tn-CrUTkCUc.zh-CN.vtt 2.84 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/weight-label-reference.gif 2.83 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/08. Answer False Negatives And Positives-KOytJL1lvgg.en.vtt 2.82 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.en.vtt 2.82 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/08. LSTM Cell Solution-X4uA0dq_4jA.zh-CN.vtt 2.82 KB
Part 04-Module 01-Lesson 04_Hyperparameters/07. Number Of Hidden Units Layers-IkGAIQH5wH8.zh-CN.vtt 2.82 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.pt-BR.vtt 2.82 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/07. Goals and Rewards, Part 1-XPnj3Ya3EuM.zh-CN.vtt 2.82 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.zh-CN.vtt 2.81 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.en.vtt 2.81 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.pt-BR.vtt 2.81 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-errors.gif 2.8 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/06. When Accuracy Wont Work-r0-O-gIDXZ0.pt-BR.vtt 2.79 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/10. 07 Recall SC V1-0n5wUZiefkQ.pt-BR.vtt 2.79 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/19. 21 RNN BPTT C V7 Final-uBy_eIJDD1M.zh-CN.vtt 2.79 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.pt-BR.vtt 2.79 KB
Part 08-Module 01-Lesson 02_Regression/16. Higher Dimensions--UvpQV1qmiE.pt-BR.vtt 2.78 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. 29 Neural Network Architecture 2-FWN3Sw5fFoM.zh-CN.vtt 2.76 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/09. Coarse Coding-Uu1J5KLAfTU.zh-CN.vtt 2.74 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.pt-BR.vtt 2.73 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.en-US.vtt 2.73 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/08. Discriminator Solution-ffPWI2yJscw.pt-BR.vtt 2.73 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.en.vtt 2.72 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/10. Network Loss-itu-uNK4brc.zh-CN.vtt 2.71 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.en.vtt 2.71 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.en.vtt 2.7 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.en.vtt 2.7 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.pt-BR.vtt 2.7 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.pt-BR.vtt 2.7 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.pt-BR.vtt 2.69 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.en.vtt 2.69 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.en.vtt 2.68 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.en.vtt 2.68 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2-chain.png 2.68 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/14. Training Optimizers-AU5gH7LS57E.zh-CN.vtt 2.67 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/07. 04 Quiz False Negatives And Positives SC V1-_ytP9zIkziw.pt-BR.vtt 2.67 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.pt-BR.vtt 2.66 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.zh-CN.vtt 2.66 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.pt-BR.vtt 2.66 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.en.vtt 2.65 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.en.vtt 2.64 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/09. 06 Precision SC V1-q2wVorBfefU.pt-BR.vtt 2.64 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.en.vtt 2.64 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.en.vtt 2.64 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.pt-BR.vtt 2.64 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.zh-CN.vtt 2.64 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.pt-BR.vtt 2.64 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.en.vtt 2.63 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/09. Training The Classifier-b7Fy3cIoJ1Y.pt-BR.vtt 2.63 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.en.vtt 2.59 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/21. ROC Curve-fWwe_JlpnlQ.zh-CN.vtt 2.58 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.pt-BR.vtt 2.57 KB
Part 05-Module 01-Lesson 02_Deep Convolutional GANs/07. Discriminator-XRqOUbf96eI.pt-BR.vtt 2.57 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/04. 03 RNN Applications V3 Final-6JbTNARuKII.zh-CN.vtt 2.56 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/neww.png 2.56 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.en.vtt 2.56 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.en.vtt 2.55 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.en.vtt 2.55 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.pt-BR.vtt 2.55 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.en.vtt 2.55 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.pt-BR.vtt 2.52 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.pt-BR.vtt 2.51 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/05. Learn Gate-aVHVI7ovbHY.zh-CN.vtt 2.51 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.en.vtt 2.51 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.pt-BR.vtt 2.51 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/03. Monte Carlo Learning-qOviWYwcvsg.zh-CN.vtt 2.5 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.en.vtt 2.5 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.pt-BR.vtt 2.5 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/12. Kernel Functions-RdkPVYyVOvU.zh-CN.vtt 2.49 KB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.en.vtt 2.49 KB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.pt-BR.vtt 2.48 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. AND And OR Perceptrons-45K5N0P9wJk.zh-CN.vtt 2.48 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/01. Introduction-yXErXQulI_o.zh-CN.vtt 2.48 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.zh-CN.vtt 2.48 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/03. Episodic vs. Continuing Tasks-E1I-BPanSM8.zh-CN.vtt 2.46 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.pt-BR.vtt 2.45 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.en.vtt 2.44 KB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.pt-BR.vtt 2.43 KB
Part 06-Module 01-Lesson 02_The RL Framework The Problem/17. MDPs, Part 3-UlXHFbla3QI.zh-CN.vtt 2.42 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.en-US.vtt 2.42 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.en.vtt 2.42 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.pt-BR.vtt 2.41 KB
Part 01-Module 01-Lesson 04_Jupyter Notebooks/02. Jupyter-qiYDWFLyXvg.pt-BR.vtt 2.41 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.en.vtt 2.41 KB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.en.vtt 2.41 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/04. RL M2L4 04 The Actor And The Critic V1-bvbE9F7urd4.zh-CN.vtt 2.41 KB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.en.vtt 2.41 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.pt-BR.vtt 2.41 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/05. Batches Solution-DdfR0RjSC-Q.zh-CN.vtt 2.4 KB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.pt-BR.vtt 2.39 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/06. 09 Higher Dimensions-eBHunImDmWw.zh-CN.vtt 2.38 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.pt-BR.vtt 2.37 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.pt-BR.vtt 2.37 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/03. Classsification Example-Dh625piH7Z0.zh-CN.vtt 2.37 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.pt-BR.vtt 2.36 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.pt-BR.vtt 2.36 KB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.pt-BR.vtt 2.36 KB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.en.vtt 2.35 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. Perceptron Algorithm--zhTROHtscQ.zh-CN.vtt 2.35 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/12. Other Activation Functions-kA-1vUt6cvQ.zh-CN.vtt 2.34 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/02. RL M2L4 02 A Better Score Function V2-_HBJ3l10-OE.zh-CN.vtt 2.34 KB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.en.vtt 2.34 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.en.vtt 2.34 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.pt-BR.vtt 2.33 KB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.zh-CN.vtt 2.33 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.en.vtt 2.31 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.zh-CN.vtt 2.31 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. DL 18 S Softmax-n8S-v_LCTms.zh-CN.vtt 2.3 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.en.vtt 2.3 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.en.vtt 2.29 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.pt-BR.vtt 2.28 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/12. Validating The Training-Oxm9ofvov3I.pt-BR.vtt 2.28 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/newx-1n.png 2.27 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/codecogseqn-2.png 2.26 KB
Part 08-Module 01-Lesson 02_Regression/10. Mean Squared Error-MRyxmZDngI4.pt-BR.vtt 2.26 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.en.vtt 2.23 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/05. Projects You will Build-PqpdX7YxTlU.zh-CN.vtt 2.23 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/06. TD Prediction Action Values-1c029-7_9GA.zh-CN.vtt 2.22 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.en.vtt 2.22 KB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.en.vtt 2.21 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.en.vtt 2.21 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/25. Gradient Descent Algorithm-snxmBgi_GeU.zh-CN.vtt 2.21 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/15. Momentum-r-rYz_PEWC8.zh-CN.vtt 2.2 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/14. 17 RNN Unfolded V3 Final-xLIA_PTWXog.zh-CN.vtt 2.2 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-general.gif 2.2 KB
Part 04-Module 01-Lesson 05_Embeddings and Word2vec/07. Negative Sampling-gW17AHBKbHY.zh-CN.vtt 2.19 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/23. Andrew Trask - Outro-nIF0GLOQglQ.pt-BR.vtt 2.19 KB
Part 03-Module 01-Lesson 05_Autoencoders/02. Autoencoders-ar5Iyx68cWc.zh-CN.vtt 2.18 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/21.png 2.18 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.en.vtt 2.17 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/08. 13 Overfitting Intro V4 Final-rmBLnVbFfFY.zh-CN.vtt 2.17 KB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.pt-BR.vtt 2.17 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.pt-BR.vtt 2.16 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/07. Backpropagation-MZL97-2joxQ.zh-CN.vtt 2.14 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/09. Putting It All Together-IF8FlKW-Zo0.zh-CN.vtt 2.13 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.pt-BR.vtt 2.12 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.pt-BR.vtt 2.12 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/neuron-output.png 2.12 KB
Part 06-Module 01-Lesson 01_Introduction to RL/01. Introduction-6jSFl5kxIBs.zh-CN.vtt 2.11 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.en.vtt 2.09 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/07. Summary-hvYQ_3LgCYs.zh-CN.vtt 2.09 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-49.gif 2.09 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/sigmoid-derivative.gif 2.09 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.en-US.vtt 2.08 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.en.vtt 2.08 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.en.vtt 2.08 KB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.en.vtt 2.07 KB
Part 08-Module 01-Lesson 02_Regression/img/codecogseqn-61.gif 2.07 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz Cross Entropy-njq6bYrPqSU.zh-CN.vtt 2.07 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/04. Gridworld Example-XeHBmPFqTsE.zh-CN.vtt 2.06 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.en.vtt 2.04 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/11. Other Architectures-MsxFDuYlTuQ.zh-CN.vtt 2.04 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.en.vtt 2.04 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.pt-BR.vtt 2.03 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/17. One-Hot Encoding-AePvjhyvsBo.zh-CN.vtt 2.02 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.en.vtt 2.02 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/b-1byk.png 2.02 KB
Part 02-Module 01-Lesson 05_Project Predicting Bike Sharing Data/01. Introduction to the Project-dOwEDeJp8yw.pt-BR.vtt 2.02 KB
Part 06-Module 01-Lesson 01_Introduction to RL/04. OpenAI Gym-MktEOWp3QLg.zh-CN.vtt 2.01 KB
Part 08-Module 01-Lesson 02_Regression/img/f1.gif 2.01 KB
Part 04-Module 01-Lesson 04_Hyperparameters/02. Introduction-erwnzFD7AeE.zh-CN.vtt 2.01 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/03. Testing-EeBZpb-PSac.zh-CN.vtt 1.99 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.en.vtt 1.97 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.en.vtt 1.97 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.pt-BR.vtt 1.95 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.pt-BR.vtt 1.93 KB
Part 04-Module 01-Lesson 03_Implementation of RNN and LSTM/03. Sequence-Batching-Z4OiyU0Cldg.zh-CN.vtt 1.92 KB
Part 08-Module 01-Lesson 02_Regression/img/f2.gif 1.88 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/07. TD Control Sarsa(0)-LkFkjfsRpXc.zh-CN.vtt 1.88 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.pt-BR.vtt 1.87 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.pt-BR.vtt 1.87 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.zh-CN.vtt 1.87 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.en.vtt 1.86 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.en.vtt 1.85 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/09. Generalized Policy Iteration-XRmz4nolEsw.zh-CN.vtt 1.84 KB
Part 06-Module 01-Lesson 01_Introduction to RL/05. Resources-_YPqfAnCqtk.zh-CN.vtt 1.83 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/32. Multiclass Classification-uNTtvxwfox0.zh-CN.vtt 1.82 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/12. MC Control Policy Evaluation-3_opwMzpEEI.zh-CN.vtt 1.82 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.pt-BR.vtt 1.8 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.en.vtt 1.78 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.pt-BR.vtt 1.78 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.pt-BR.vtt 1.78 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.en.vtt 1.77 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.en.vtt 1.76 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/17. Policy Iteration-gqv7o1kBDc0.zh-CN.vtt 1.75 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.en.vtt 1.75 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/hidden-layer-weights.gif 1.75 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.pt-BR.vtt 1.74 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.pt-BR.vtt 1.74 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.pt-BR.vtt 1.74 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.pt-BR.vtt 1.73 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.pt-BR.vtt 1.73 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.pt-BR.vtt 1.73 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/23. What Is The Neural Network Looking At-qN-rvoxPbBw.pt-BR.vtt 1.72 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.en.vtt 1.72 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/04. Pretrained VGGNet-BpzI6Svmuv8.zh-CN.vtt 1.71 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.pt-BR.vtt 1.71 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.pt-BR.vtt 1.71 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/33. DL 42 Neural Network Error Function (1)-SC1wEW7TtKs.zh-CN.vtt 1.69 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/02. 02 Skin Cancer V4-70jGZeiTNgk.zh-CN.vtt 1.68 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.en.vtt 1.68 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/img/backprop-weight-update.gif 1.68 KB
Part 04-Module 01-Lesson 06_Sentiment Prediction RNN/04. Creating Testing Sets-BRBbrNLz1ho.zh-CN.vtt 1.68 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.pt-BR.vtt 1.67 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/12.png 1.67 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.en.vtt 1.66 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.en-US.vtt 1.65 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.en.vtt 1.65 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.en.vtt 1.65 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/04. Another Gridworld Example-n9SbomnLb-U.zh-CN.vtt 1.65 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.zh-CN.vtt 1.65 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/05. The Data-2RLbbV7MQNA.zh-CN.vtt 1.64 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.en.vtt 1.64 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/02. Meet Your Instructors--UOFRxCu414.zh-CN.vtt 1.63 KB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.en.vtt 1.63 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/04. Accuracy-s6SfhPTNOHA.zh-CN.vtt 1.63 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.en.vtt 1.62 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.pt-BR.vtt 1.61 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.en.vtt 1.61 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.pt-BR.vtt 1.61 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.en.vtt 1.61 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.en.vtt 1.6 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/04. Classification Example-46PywnGa_cQ.pt-BR.vtt 1.6 KB
Part 08-Module 01-Lesson 02_Regression/img/f6.gif 1.6 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en-US.vtt 1.57 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.zh-CN.vtt 1.57 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.pt-BR.vtt 1.56 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.en.vtt 1.56 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.pt-BR.vtt 1.54 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.en.vtt 1.54 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.zh-CN.vtt 1.53 KB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BR.vtt 1.53 KB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.pt-BrR.vtt 1.53 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.pt-BR.vtt 1.52 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.en.vtt 1.51 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/12. Non-Linear Regions-B8UrWnHh1Wc.pt-BR.vtt 1.51 KB
Part 04-Module 01-Lesson 04_Hyperparameters/06. Number Of Iterations-TTdHpSb4DV8.zh-CN.vtt 1.5 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/08. LSTM 7 Use Gate-5Ifolm1jTdY.zh-CN.vtt 1.5 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/z.png 1.49 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.en.vtt 1.49 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.pt-BR.vtt 1.49 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/22. Visualization-aGIGB4Ta3_A.zh-CN.vtt 1.48 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.en.vtt 1.47 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.pt-BR.vtt 1.46 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.zh-CN.vtt 1.46 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.en.vtt 1.46 KB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.pt-BR.vtt 1.46 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.zh-CN.vtt 1.45 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/03. RL M2L4 03 Two Function Approximators V1-37KQEgLaLfw.zh-CN.vtt 1.45 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.en.vtt 1.44 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/18. Maximum Likelihood 1-1yJx-QtlvNI.zh-CN.vtt 1.43 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/23. DL 29 Logistic Regression-Minimizing The Error Function-KayqiYijlzc.pt-BR.vtt 1.42 KB
Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.pt-BR.vtt 1.42 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/34. Chain Rule-YAhIBOnbt54.zh-CN.vtt 1.42 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/09. Regra da cadeia-YAhIBOnbt54.zh-CN.vtt 1.42 KB
Part 08-Module 01-Lesson 02_Regression/04. Fitting A Line-gkdoknEEcaI.en.vtt 1.41 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/25. Confusion Matrix-3rpN-YYlfes.zh-CN.vtt 1.41 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/02. Gradient Descent-29PmNG7fuuM.zh-CN.vtt 1.41 KB
Part 08-Module 01-Lesson 02_Regression/img/y.gif 1.41 KB
Part 03-Module 01-Lesson 06_Transfer Learning in TensorFlow/07. Building The Classifier-pPHiVddBY0Q.pt-BR.vtt 1.41 KB
Part 02-Module 01-Lesson 02_Implementing Gradient Descent/06. Multilayer perceptrons-Rs9petvTBLk.zh-CN.vtt 1.39 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.pt-BR.vtt 1.39 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.en.vtt 1.38 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/14. Summary-MTEBk43oByU.zh-CN.vtt 1.37 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.en.vtt 1.37 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/l2.png 1.37 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.pt-BR.vtt 1.37 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/01. RL M2L4 01 Actor Critic Methods RENDER V1 V1-FXhyxJzgt8U.zh-CN.vtt 1.36 KB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.en.vtt 1.36 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.en.vtt 1.36 KB
Part 04-Module 01-Lesson 01_Recurrent Neural Networks/01. 00 Luis Introducing Ortal Newtitle121217-oXv7GiC-jrM.zh-CN.vtt 1.35 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.en.vtt 1.34 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.pt-BR.vtt 1.34 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/04. LSTM Architecture-ycwthhdx8ws.zh-CN.vtt 1.34 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.en.vtt 1.33 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.pt-BR.vtt 1.33 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.en.vtt 1.33 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.en.vtt 1.32 KB
Part 08-Module 01-Lesson 02_Regression/img/codecogseqn-62.gif 1.31 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.pt-BR.vtt 1.31 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.pt-BR.vtt 1.31 KB
Part 06-Module 02-Lesson 01_RL in Continuous Spaces/13. Non-Linear Function Approximation-rITnmpD2mN8.zh-CN.vtt 1.3 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.en.vtt 1.3 KB
Part 01-Module 01-Lesson 01_Welcome to Deep Learning/10. Getting-Setup-1SuxTnuQkeE.zh-CN.vtt 1.29 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/01. GANs Intro-F7XgI6TmaGI.pt-BR.vtt 1.29 KB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.en.vtt 1.29 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdw2.png 1.28 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.pt-BR.vtt 1.27 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/01. Intro to Deep Q-Learning-o3cmuUDhP3I.zh-CN.vtt 1.27 KB
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.pt-BR.vtt 1.26 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.pt-BR.vtt 1.26 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.en.vtt 1.26 KB
Part 08-Module 01-Lesson 02_Regression/02. DLND REG 01 Quiz Housing Prices V2-8CSBiVKu35Q.zh-CN.vtt 1.26 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/17. 16 Solution Diagnosing Cancer V3-IJYvt2ssUFk.zh-CN.vtt 1.25 KB
Part 06-Module 02-Lesson 03_Policy-Based Methods/08. M2L3 08 V1-og3W6CXn1F0.zh-CN.vtt 1.24 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/11. Vanishing Gradient-W_JJm_5syFw.zh-CN.vtt 1.24 KB
Part 02-Module 01-Lesson 08_TensorFlow/img/linear-equation.gif 1.23 KB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.pt-BR.vtt 1.23 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.en.vtt 1.22 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.en.vtt 1.22 KB
Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.pt-BR.vtt 1.21 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.en.vtt 1.19 KB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.en-US.vtt 1.19 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.pt-BR.vtt 1.18 KB
Part 08-Module 01-Lesson 02_Regression/21. Polynomial Regression-DBhWG-PagEQ.pt-BR.vtt 1.18 KB
Part 08-Module 01-Lesson 02_Regression/img/e.gif 1.18 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/08. Why Neural Networks-zAkzOZntK6Y.zh-CN.vtt 1.18 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/newx.png 1.18 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.pt-BR.vtt 1.18 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/04. Medical Classification-RCOSP60dV7U.zh-CN.vtt 1.17 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.en.vtt 1.17 KB
Part 06-Module 01-Lesson 03_The RL Framework The Solution/01. Introduction-9Wyf5Zsska8.zh-CN.vtt 1.16 KB
Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.en.vtt 1.16 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.pt-BR.vtt 1.16 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/29. Continuous Perceptrons-07-JJ-aGEfM.zh-CN.vtt 1.15 KB
Part 08-Module 01-Lesson 02_Regression/01. Welcome To Linear Regression-zxZkTkM34BY.en.vtt 1.15 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.en.vtt 1.15 KB
Part 08-Module 02-Lesson 01_MiniFlow/img/dcdl2.png 1.15 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.en.vtt 1.14 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.en.vtt 1.14 KB
Part 08-Module 01-Lesson 02_Regression/img/f4.gif 1.13 KB
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/06. Forget Gate-iWxpfxLUPSU.zh-CN.vtt 1.12 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/31. Non-Linear Models-HWuBKCZsCo8.zh-CN.vtt 1.12 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.en.vtt 1.12 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.en.vtt 1.11 KB
Part 08-Module 02-Lesson 01_MiniFlow/01. Miniflow Introduction-Nqp_UifEwt0.zh-CN.vtt 1.11 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.en-US.vtt 1.1 KB
Part 06-Module 02-Lesson 02_Deep Q-Learning/13. Wrap Up-x6JggcDTcys.zh-CN.vtt 1.1 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.en.vtt 1.09 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.pt-BR.vtt 1.09 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.pt-BR.vtt 1.08 KB
Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.pt-BR.vtt 1.08 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.pt-BR.vtt 1.08 KB
Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.zh-CN.vtt 1.07 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.en.vtt 1.07 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/16. Error Functions Around the World-34AAcTECu2A.zh-CN.vtt 1.06 KB
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.zh-CN.vtt 1.06 KB
Part 08-Module 01-Lesson 02_Regression/05. Moving A Line-8EIHFyL2Log.pt-BR.vtt 1.05 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.pt-BR.vtt 1.05 KB
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.en.vtt 1.05 KB
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.en.vtt 1.04 KB
Part 05-Module 01-Lesson 03_Generate Faces/02. P5 Intro-jvJtHYBX7sM.en.vtt 1.04 KB
Part 08-Module 01-Lesson 02_Regression/img/gif-1.gif 1.03 KB
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.pt-BR.vtt 1.02 KB
Part 06-Module 01-Lesson 06_Temporal-Difference Methods/13. TD Control Expected Sarsa-kEKupCyU0P0.zh-CN.vtt 1.02 KB
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.pt-BR.vtt 1.02 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/06. DL 53 Q Regularization-KxROxcRsHL8.zh-CN.vtt 1.02 KB
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.pt-BR.vtt 1.02 KB
Part 02-Module 01-Lesson 03_Training Neural Networks/09. Local Minima-gF_sW_nY-xw.zh-CN.vtt 1.01 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.en.vtt 1.01 KB
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.en.vtt 1 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.pt-BR.vtt 1 KB
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.pt-BR.vtt 1 KB
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.en.vtt 1 KB
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/09. XOR Perceptron-TF83GfjYLdw.zh-CN.vtt 1021 B
Part 02-Module 01-Lesson 03_Training Neural Networks/14. Learning Rate-TwJ8aSZoh2U.zh-CN.vtt 1020 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/03. Survival Rate-QPlp3NeGuSk.zh-CN.vtt 996 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.zh-CN.vtt 995 B
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.en.vtt 983 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/09. Training The Neural Network-HwiI-UXUx-M.pt-BR.vtt 977 B
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 13 Absolute Vs Squared Error 3 V1 (1)-bIVGf_dDkrY.pt-BR.vtt 970 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/11. Solution Random Vs Preinitialized Thoughts-sOuoRZRKDzs.zh-CN.vtt 965 B
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.zh-CN.vtt 959 B
Part 08-Module 01-Lesson 02_Regression/14. DLND REG 12 Absolute Vs Squared Error 2 V1 (1)-7El1OH17Oi4.pt-BR.vtt 956 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.pt-BR.vtt 947 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.en.vtt 943 B
Part 05-Module 01-Lesson 01_Generative Adversarial Networks/09. Discriminator Network-nWXxT8OqCfs.pt-BR.vtt 939 B
Part 08-Module 01-Lesson 02_Regression/03. Solution Housing Prices-uhdTulw9-Nc.en.vtt 939 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.pt-BR.vtt 937 B
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.en.vtt 937 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/06. 06 Image Challenge V3-Efnoj1KNPHw.zh-CN.vtt 920 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/img/codecogseqn-58.gif 919 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.en.vtt 918 B
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.en.vtt 910 B
Part 06-Module 02-Lesson 04_Actor-Critic Methods/06. RL M2L4 06 Actor Critic With Advantage RENDER V1 V1-Bwd2OF7hJXQ.zh-CN.vtt 891 B
Part 08-Module 01-Lesson 01_Evaluation Metrics/03. Confusion-Matrix-Solution-ywwSzyU9rYs.pt-BR.vtt 889 B
Part 06-Module 01-Lesson 04_Dynamic Programming/01. Introduction-ek2PD9RDrWw.zh-CN.vtt 883 B
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.pt-BR.vtt 874 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.en.vtt 874 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.en.vtt 867 B
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.pt-BR.vtt 866 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.pt-BR.vtt 857 B
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.en.vtt 856 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.en.vtt 853 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.en.vtt 850 B
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.pt-BR.vtt 850 B
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.zh-CN.vtt 840 B
Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.en.vtt 831 B
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.en.vtt 830 B
Part 02-Module 01-Lesson 03_Training Neural Networks/02. Training Optimization-UiGKhx9pUYc.en.vtt 824 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.zh-CN.vtt 823 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/01. Introduction-ZCpXvVdIdnY.zh-CN.vtt 822 B
Part 06-Module 01-Lesson 05_Monte Carlo Methods/01. Introduction-W2EP3riQSus.zh-CN.vtt 822 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/19. Quiz - Cross 1--xxrisIvD0E.zh-CN.vtt 813 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.zh-CN.vtt 810 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.pt-BR.vtt 804 B
Part 06-Module 02-Lesson 03_Policy-Based Methods/06. M2L3 06 V1-RMjdQkl6CqE.zh-CN.vtt 804 B
Part 08-Module 01-Lesson 02_Regression/14. Absolute Vs Squared Error-csvdjaqt1GM.pt-BR.vtt 793 B
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.en.vtt 792 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.en.vtt 791 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.en.vtt 790 B
Part 06-Module 02-Lesson 03_Policy-Based Methods/01. M2L3 01 V1-YOSREyp04HA.zh-CN.vtt 787 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.pt-BR.vtt 772 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/14. Solution Sensitivty And Specificity-GBZjyeMjKxc.zh-CN.vtt 766 B
Part 05-Module 01-Lesson 03_Generate Faces/01. Last Project - Congrats-UUqU8SYBZ9Q.zh-CN.vtt 764 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.pt-BR.vtt 754 B
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.en.vtt 746 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/13. Error Functions-YfUUunxWIJw.zh-CN.vtt 739 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/10. 10 Quiz Random Vs Preinitiliazed Weights V3-DRC1e4XGl2M.zh-CN.vtt 734 B
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.en.vtt 734 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/08. Solution Data Challenges-1z3o4niQuNg.pt-BR.vtt 730 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.zh-CN.vtt 729 B
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.en.vtt 725 B
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.pt-BR.vtt 720 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.pt-BR.vtt 719 B
Part 06-Module 01-Lesson 02_The RL Framework The Problem/01. Introduction-X_9l_ZqXXBA.zh-CN.vtt 718 B
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.en-US.vtt 716 B
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en-US.vtt 701 B
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.pt-BR.vtt 700 B
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.en.vtt 694 B
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.en.vtt 688 B
Part 02-Module 01-Lesson 06_Sentiment Analysis/01. Introducing Andrew Trask-ltO71Bm8b3M.zh-CN.vtt 685 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/19. 17 Quiz ROC Curve 1 PT2 V1-Xv3v59_CfEU.pt-BR.vtt 678 B
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.en.vtt 667 B
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.pt.vtt 656 B
Part 02-Module 01-Lesson 08_TensorFlow/17. Conclusion-wOiUQDgGD9E.zh-CN.vtt 655 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/20. Solution ROC Curve-sdUUf6RRmXI.pt-BR.vtt 643 B
Part 04-Module 01-Lesson 07_Generate TV Scripts/01. Project-3-Intro-qNpv7IjQzo0.zh-CN.vtt 640 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.en.vtt 633 B
Part 04-Module 01-Lesson 02_Long Short-Term Memory Networks (LSTM)/07. Remember Gate-0qlm86HaXuU.zh-CN.vtt 632 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.zh-CN.vtt 624 B
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.pt-BR.vtt 618 B
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.zh-CN.vtt 615 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.en.vtt 607 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/30. Non-Linear Data-F7ZiE8PQiSc.pt-BR.vtt 600 B
Part 03-Module 01-Lesson 02_Convolutional Neural Networks/01. Introducing Alexis-38ExGpdyvJI.pt-BR.vtt 599 B
Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.pt-BR.vtt 590 B
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.en.vtt 586 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.pt-BR.vtt 584 B
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.pt-BR.vtt 574 B
Part 08-Module 01-Lesson 02_Regression/25. Conclusion-pyeojf0NniQ.en.vtt 558 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.en.vtt 551 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.zh-CN.vtt 548 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/21. Formula For Cross 1-qvr_ego_d6w.zh-CN.vtt 545 B
Part 02-Module 01-Lesson 07_Keras/06. Keras Lab-a50un22BsLI.zh-CN.vtt 540 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.pt-BR.vtt 538 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.en.vtt 526 B
Part 08-Module 01-Lesson 01_Evaluation Metrics/05. Accuracy 2-ueYCLfd_aNQ.zh-CN.vtt 524 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.en.vtt 510 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.en.vtt 508 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.en.vtt 505 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.pt-BR.vtt 501 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/16. Quiz - Softmax-NNoezNnAMTY.en.vtt 495 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.zh-CN.vtt 487 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.pt-BR.vtt 482 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/15. Discrete vs Continuous-rdP-RPDFkl0.zh-CN.vtt 481 B
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.pt-BR.vtt 478 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/28. Mini Project Introduction-Rgf3YVFWl-M.zh-CN.vtt 475 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.pt-BR.vtt 472 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/07. 07 Quiz Data Challenges V1-F8yc7BlV93c.zh-CN.vtt 468 B
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.en.vtt 466 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/16. 15 Quiz Diagnosing Cancer V3-4UzkwecBJro.zh-CN.vtt 456 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.en.vtt 420 B
Part 03-Module 01-Lesson 08_Deep Learning for Cancer Detection with Sebastian Thrun/13. 13 Quiz Sensitivity And Specificty V3-O17MnhWBmKA.pt-BR.vtt 420 B
Part 02-Module 01-Lesson 03_Training Neural Networks/10. Random Restart-idyBBCzXiqg.zh-CN.vtt 419 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.zh-CN.vtt 390 B
Part 02-Module 01-Lesson 01_Introduction to Neural Networks/10. DL 10 S Perceptron Algorithm-fATmrG2hQzI.pt-BR.vtt 364 B
[CourseClub.NET].url 123 B
Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.pt-BR.vtt 91 B
Part 08-Module 02-Lesson 01_MiniFlow/07. Pixels are Features!-qE5YYXtPq9U.en-US.vtt 72 B
[DesireCourse.Com].url 51 B
Download Info
-
Tips
“[CourseClub.NET] UDACITY - Deep Learning Nanodegree Program” Its related downloads are collected from the DHT sharing network, the site will be 24 hours of real-time updates, to ensure that you get the latest resources.This site is not responsible for the authenticity of the resources, please pay attention to screening.If found bad resources, please send a report below the right, we will be the first time shielding.
-
DMCA Notice and Takedown Procedure
If this resource infringes your copyright, please email([email protected]) us or leave your message here ! we will block the download link as soon as possiable.